Thank

A Family Company Since 1926

QUALITY...SERVICE...INTEGRITY

Four Barriers For Four Wetting Potentials: How To Design Effective Exterior Walls

Presented by:

Len Anastasi

len@exo-tec.biz

Consulting, Inc.

www.exo-tec.biz

The Air Barrier Association of America is a Registered Provider with The American Institute of Architects Continuing Education Systems. Credit earned on completion of this program will be reported to CES Records for AIA members. Certificates of Completion for non-AIA members available on request.

This program is registered with the AIA/CES for continuing professional education. As such, it does not include content that may be deemed or construed to be an approval or endorsement by the AIA of any material of construction or any method or manner of handling, using, distributing, or dealing in any material or product. Questions related to specific materials, methods, and services will be addressed at the conclusion of this presentation.

Copyright Materials

This presentation is protected by US and International copyright laws. Reproduction, distribution, display and use of the presentation without permission of the speaker is prohibited.

Learning Objectives

Upon completing this program, the participant should understand

- **1. Basic Building Physics**
- 2. Basic Building Science
- 3. The Four Barriers Needed For The Weather Barrier System
- 4. How to properly design & specify the Weather Barrier System

The Wetting Potentials

Liquid Water Ingress (Water Barrier)

Moisture Transport Due To Air Flow (Air Barrier)

Dew Point (Heat Barrier Location)

Vapor Migration (Vapor Barrier)

How Do We Properly Deal With These Four Wetting Potentials???

Good HAMM!!!

What the #@\$& is HAMM ?

- HAMM is the 4 barriers needed to protect a building against the effects of weather. These barriers are:
- H Heat Barrier
- A Air Barrier
- M_L Water Barrier (Liquid Moisture)
- **Mv** Vapor Barrier (Gaseous Moisture)

HAMM is the WEATHER BARRIER SYSTEM

HAMM Order Of Magnitude

- **M**[⊥] Water Barrier (Liquid Moisture)
- **A** Air Barrier
- **H** Heat Barrier
- **Mv** Vapor Barrier (Gaseous Moisture)

Good HAMM effectively deals with thermal transfer, wetting and drying potentials:

Heat Barrier

- Thermal loss, gain and bridging
- Wetting potential due to a dew point (location)

<u>Air Barrier</u>

- Thermal loss and gain
- Wetting potential due to moisture transport via air flow

Good HAMM effectively deals with thermal, wetting and drying potentials:

Water Barrier

- Wetting potential due liquid moisture intrusion into and through the Building Enclosure System.

Vapor Barrier

-Wetting potential due to vapor diffusion into and through the Building Enclosure System.

THE DEW POINT ANALYSIS TOOL

The Dew Point Analysis Tool is the most widely used design tool in determining suitability of building enclosure system design for moisture control.

But guess what????

It doesn't work!!!

Oak Ridge National Laboratories http://www.ornl.gov/sci/btc/apps/moisture/ibpe_sof1.html

"Out of Date: Dew-Point(Glaser)"

" The Dew-Point method as detailed in ASHRAE has been a common method to assess the moisture balance of a building component by considering vapour diffusion transport in its interior. However, this method does not allow for the capillary moisture transport in the component, nor for its sorption capacity, both of which reduce the risk of damage in case of condensation. Furthermore, since the method only considers steady-state transport under heavily simplified boundary conditions, it cannot reproduce individual short-term events or allow for rain and solar radiation. It is meant to provide a general assessment of the hygrothermal suitability of a component, not to produce a simulation of realistic heat and moisture conditions in a component exposed to the weather prevailing at its individual location."

Moisture Control In Buildings Heinz R. Trechsel, Editor ASTM Manual Series

Chapter 11: Design Tools by Anton TenWolde

Commentary on the Dew Point Analysis, Glaser Diagram and Kieper Diagram

"The methods discussed previously have the same severe limitations and should therefore be used with caution. The methods only "predict " condensation, not moisture damage. Many constructions can sustain limited periods of condensation without significant damage, especially if the temperature are near or below freezing and the material is able to dry quickly. In addition, performance problems such as mold and mildew or paint failure are not necessarily related to surface condensation.

These methods ignore air leakage. If air leakage is present, it tends to dominate moisture transport. Even small amounts of indoor air leaking into the wall (exfiltration) can more than double the condensation rate during Winter.....

Moisture Control In Buildings Heinz R. Trechsel, Editor ASTM Manual Series

Chapter 11: Design Tools by Anton TenWolde

Commentary on the Dew Point Analysis, Glaser Diagram and Kieper Digram

"The methods do not recognize liquid capillary action transport or any transport mechanisms other than diffusion. This tends to result in the underprediction of moisture transfer in materials such as wood in higher moisture contents......

All three methods are steady state and do not recognize the effects of moisture and heat storage. This may be a major drawback in in trying to determine the potential for damage in a wall or roof with large storage capacity in a climate with a low drying potential.....

All three methods are one dimensional; that is, the effect of corners, holes, or cracks, studs or other thermal bridges cannot be evaluated.

THE HEAT BARRIER

• Resists thermal transfer through the building enclosure system.

- R-Value is the measure of resistance to thermal transfer.
- The higher the R-Value, the greater the resistance.
- The greater the resistance, the lower the heat gain / loss.

• The location of the heat barrier, in a properly designed and constructed building enclosure system, determines the location of the dew point.

THE HEAT BARRIER

Second Law Of Thermodynamics

"The entropy of an isolated system which is not in equilibrium will tend to increase over time, approaching a maximum value at equilibrium."

Translation anyone???

Heat seeks cold!!!

THERMAL PERFORMANCE

Factors affecting thermal performance of insulation

• Air leakage through gaps in the insulation

• Wind wash effect on fibrous insulation

• Thermal Bridging

New Whole Wall R-value Calculators As A Part Of The ORNL Material Database For Whole Building Energy Simulations

These calculators are replacing the old Whole Wall Thermal Performance calculator. These new versions of the calculator contain many new features and are part of the newly developed *Interactive Envelope Materials Database for Whole-Building Energy Simulation Programs*.

The simple version of the Whole Wall R-value calculator is now available for use. This calculator is similar to the previous Whole Wall Thermal Performance calculator and does not require any downloads from the user. However, it was updated to allow calculations for fourteen wall details instead of nine. It simply runs over the Internet. Use this calculator for whole wall R-value calculations and for direct comparisons of different wall technologies. This calculator uses a residential building containing a rectangle slab-on-grade foundation with one floor containing a set amount of windows and doors. A link is available for detailed specifications of the example building.

***** UPATDATE 08-30-05 *****

New Whole Wall R-value Calculator 2.0 Available For Download

http://www.ornl.gov/sci/roofs+walls/AWT/home.htm

THERMAL BRIDGING

What is the R-Value of a 6" LGMF wall with R-19 batts insulation, exterior gypsum sheathing and interior gypsum wallboard?

THE AIR BARRIER

<u>Air Barrier System (ABS)</u>: A system of building components within the building enclosure system (BES) designed and installed in such a manner as to stop the flow of air into and out of buildings through the BES.

Self-Adhering Sheet Membranes

Self-Adhering Sheet Membranes

Fluid Applied Membranes

Fluid Applied Membranes

2 lb Density Closed Cell Spray Polyurethane Foam

2 lb Density Closed Cell Spray Polyurethane Foam

Precast Concrete Panel Veneer

Fibrous Insulation Does Not Work On Precast

2 lb Density Closed Cell Spray Polyurethane Foam

Exterior Sheathing

Rigid Boardstock Insulation

Polyolefin Films

Air Barrier Systems

For the life of your building

by Leonard Anastasi, CSI

n the past decade, the use of air barrier systems (ABSs) in the building envelope has been steadily increasing because they have been proven to increase energy efficiency, reduce the potential for envelope system failures, and reduce the occurrence of indoor air quality (IAQ) problems.

To date, ABSs have primarily been included in envelopes for "high performance" or "high-end" buildings, such as field or pool houses, museum storage facilities, and "monumental" buildings. However, research into the theory, science, and performance of ABSs has significantly increased in this country, to the point where their advantages are significant in virtually all buildings.

The U.S. Department of Energy (DoE) has concluded that up to 40 percent of the energy required to heat/cool a building is wasted through uncontrolled air movement. As such, building owners can expect substantial savings in their beating and cooling costs. ABSs can also eliminate the occurrence of building envelope system failures caused by moisture infiltrating the system. Moisture cornodes metals and decreases the thermal performance of insulation.

Air flow has the ability to transport exponentially more

moisture into and through building envelopes than can be transferred through vapor migration. By stopping the flow of air through the building envelope, the flow of moisture is virtually halted, and by reducing moisture, one can also eliminate many of the conditions under which mold and fungi grow. These biological agents are a major concern for building professionals due to the effects they have on both IAQ and the health of building occupants.

The incorporation of ABSs in new construction is not a passing fad. The state of Massachusetts, for example, implemented legislation this year requiring air barrier systems in all commercial buildings and certain multi-tenant buildings over 929 m^2 (10,000 sf)—and they are not alone. Currently, 21 states are considering incorporating ABSs in their building codes.

The real deal

Many in the construction industry do not know what an ABS is, nor what it does. The most succinct definition was penned by Lance Robson Jr. of Building Envelope Technologies Inc. for the Air Barrier Association of America (ABAA): "A combination of building envelope components designed and installed in such a manner as to control the infiltration and exfiltration of air through the building envelope.

Air Barrier Systems

Air barrier systems can be classified as either:

Vapor Permeable Air Barrier Systems

or

Air And Vapor Barrier Systems

Air flow into and out of buildings is caused by:

Wind pressure

Fan pressure

Stack pressure

Why stop the flow of air into and through the BES?

First and foremost.....

1.) Air flow has the ability to transport exponentially more moisture into and through the building enclosure system than occurs through vapor migration or diffusion. Estimates range from 30 to 200 times more moisture transport occurs via air flow than vapor migration.

Corrosion of metal items

Photo of mold in wall. Photo supplied courtesy of Canadian Home Builders' Association (CHBA) and Canadian Mortgage and Housing Corp. (CMHC)

The "M" Word

Crumbling masonry

Efflorescence

2.) Air flow into and out of buildings can affect the location of the dew point.

3.) Air leakage into and out of buildings causes the HVAC system to expend extraneous energy in order to maintain the building's desired temperature and humidity levels.

4.) Air flow is a vehicle by which sound travels.

5.) Air flow is a vehicle by which particulate matter travels.

6.) Air flow is a vehicle by which odors and gaseous substances travel.

Why use Air Barrier Systems?

The use of Air Barrier Systems result in: **Reduced Building Enclosure System problems** Wetting potentials effectively dealt with **Improved indoor air quality Reduced building energy consumption Reduced building heating and cooling costs Reduced fossil fuel consumption Reduced pollution emissions Reduction of the Greenhouse Effect**

How much moisture gets in via air transport?

This value cannot be accurately calculated due to the fact that both the direction and rate of air flow into and through the BES can change dramatically on as little as a minute to minute basis. More importantly, the amount of moisture created due to condensation of this flowing air cannot be accurately calculated, predicted or accounted for.

Highly advanced computer modeling programs exist to analyze vapor transport, thermal performance, hygric capacity and drying times of exterior walls. Not one of them can account for the transport of moisture via air flow.

THE WATER BARRIER

• Resists the intrusion of moisture in its liquid form (water) into and through the building enclosure system.

• Over the history of Building Enclosure System use, water barriers have been:

- Ineffective due to their inability to resist water penetration.
- Ineffective due to improper installation.
- Ineffective due to lack of longevity.

• If an air barrier is properly designed and installed in a building enclosure system and the air barrier material is also a water barrier, won't the past deficiencies of water barrier be resolved?

Is this an effective water barrier?

Is this an effective water barrier???

THE VAPOR BARRIER

Vapor barriers are materials used in Building Enclosure Systems to retard the diffusion of vapor into and through the building enclosure system.

Why Are Vapor Barriers Needed?

By retarding the diffusion of vapor through the Building Enclosure System, conditions that create dew points within Building Enclosure Systems can be reduced or prevented and interior RH levels can be maintained.

What Is Vapor Diffusion?

Vapor diffusion is the process by which vapor seeks to equalize its content between different environments (the Ideal Gas Law).

The driving force (or "potential") for this occurrence is vapor pressure.

Vapor pressure is a function of the vapor content of the air (RH) and the temperature.

Vapor diffusion is caused by a vapor pressure differential (ΔP) between different environments. The greater the ΔP between environments, the greater the amount of vapor diffusion that occurs.

Dry bulb	Relative humidity (in percent)													
temperature	100	90	80	70	60	50	40	30	20	10				
°F.														
100	0.948	0.854	0.758	0.663	0.569	0.474	0.379	0.284	0.189	0.095				
90	.698	.628	.558	.489	.419	.349	.279	.209	.140	.070				
80	.506	.455	.405	.357	.303	.253	.202	.152	.101	.051				
75	.429	.386	.343	.300	.258	.214	.172	.129	.086	.043				
70	.362	.326	.290	.253	.217	.181	.145	.108	.072	.036				
65	.305	.274	.244	.213	.183	.152	.122	.091	.061	.030				
60	.256	.230	.205	.179	.153	.128	.102	.077	.051	.026				
55	.214	.192	.171	.149	.128	.107	.085	.064	.042	.021				
50	.178	.160	.142	.124	.107	.089	.071	.053	.036	.018				
45	.147	.132	.118	.111	.088	.073	.059	.044	.029	.015				
40	.122	.110	.098	.085	.073	.061	.049	.037	.024	.012				
35	.100	.090	.080	.070	.060	.050	.040	.030	.020	.010				
30	.080	.072	.064	.056	.048	.040	.032	.024	.016	.008				
25	.063	.057	.050	.044	.037	.032	.025	.019	.012	.006				
20	.052	.047	.042	.036	.031	.026	.020	.015	.010	.005				
10	.031	.028	.025	.022	.018	.015	.012	.009	.006	.003				
0	.018	.016	.014	.013	.010	.009	.007	.005	.003	.002				
-10	.011	.010	.009	.008	.007	.006	.004	.003	.002	.001				
-15	.008	.007	.006	.005	.005	.004	.003	.002	.002	.001				

Table 1. VAPOR PRESSURE FOR VARIOUS TEMPERATURES AND RELATIVE HUMIDITIES (POUNDS PER SQUARE INCH).

Reference: HUD Research Paper No. 28, Moisture Migration from the Ground.

The Dew Point

The dew point is the temperature at which air that contains a certain amount of vapor can no longer hold that vapor and must exhaust itself of excess vapor by depositing it on adjacent surfaces in the form of condensation (water).

Where does the water on the outside of the glass come from?

Air Temp °F		% Relative Humidity																	
	100	95	90	85	80	75	70	65	60	55	50	45	40	35	30	25	20	15	10
110	110	108	106	104	102	100	98	95	93	90	87	84	80	76	72	65	60	51	41
105	105	103	101	99	97	95	93	91	88	85	83	80	76	72	67	62	55	47	37
100	100	99	97	95	93	91	89	86	84	81	78	75	71	67	63	58	52	44	32
95	95	93	92	90	88	86	84	81	79	76	73	70	67	63	59	54	48	40	32
90	90	88	87	85	83	81	79	76	74	71	68	65	62	59	54	49	43	36	32
85	85	83	81	80	78	76	74	72	69	67	64	61	58	54	50	45	38	32	
80	80	78	77	75	73	71	69	67	65	62	59	56	53	50	45	40	35	32	
75	75	73	72	70	68	66	64	62	60	58	55	52	49	45	41	36	32		1
70	70	68	67	65	63	61	59	57	55	53	50	47	44	40	37	32			
65	65	63	62	60	59	57	55	53	50	48	45	42	40	36	32				
60	60	58	57	55	53	52	50	48	45	43	41	38	35	32					
55	55	53	52	50	49	47	45	43	40	38	36	33	32						
50	50	48	46	45	44	42	40	38	36	34	32	-	-						
45	45	43	42	40	39	37	35	33	32	-									
40	40	39	37	35	34	32		la contra c											
35	35	34	32																
32	32		_																

Dew Point Calculator

The dew point is the temperature at which condensation forms on condensing surfaces. When air comes into contact with a surface that is at or below the dew point temperature of that air, condensation will form on it.

EXAMPLE 1: If the interior air temperature is 70° F and has an RH of 30%, the infiltration of air that is 37° F (the dew point temperature) can cool condensing surfaces to this temperature (37°) causing dew to form on these surfaces.

EXAMPLE 2: If exterior air with a temperature of 85° F and an RH of 70% infiltrates into the building envelope, dew will form on condensing surfaces in the system that have temperatures of 74° F or less.

BUILDING EXTERIOR WALLS 30 - 40 YEARS AGO

INTERIOR

HEATED AND COOLED ENVIRONMENT

One of the doors in Len's house

NOT A PROBLEM!!!

THE DYSFUNCTIONAL BUILDING ENCLOSURE SYSTEM

HEATED, COOLED AND HUMIDITY

INTERIOR

CONTROLLED **ENVIRONMENT**

LGMF MEMBERS WILL CORRODE WHEN EXPOSED HIGH RH LEVELS

DEW POINT RANGE

How much moisture gets in via vapor migration?

The amount of moisture entering a building through the BES due to vapor migration depends on the vapor pressure differential (ΔP) and the perm rating of the material(s) it must pass through. This value is known as the Water Vapor Transmission Rate (WVTR). The calculation is simple.

 $WVTR = A \times T \times \Delta P \times perms$

A = Area in sq.ftT = Time in hours

 Δ P = difference in vapor pressure between inside and outside measured in inches of mercury (in Hg)

1 Perm = 1 grain of water / 1 sf of material / hr at a ΔP of 1 in. Hg

 $1 \text{ psi} = 2.0434 \text{ in HG} (68^{\circ} \text{ F})$

COMMON ABOVE GRADE BES WITHOUT A VAPOR BARRIER

 $WVT = A \times T \times delta P \times Perms$

A = 14,400 (net wall area of a 4 floor 80,000 sf office building) T = 720 (24 hrs x 30 days) $\Delta P = (VP \text{ at } 85^{\circ}F \text{ x RH}) - (VP \text{ at } 70^{\circ}F \text{ x RH})$ = (0.602 x .65) - (0.7397 x 0.3) = 0.3913 - 0.108 = 0.2933

Perms = 40

WVT = 14,400 x 720 x 0.2933 x 40 = 121,637,376 grains (7,000 grains = 1 lb) = 17,376.77 lbs.of water (8.28 lbs of water = 1 gallon) = 2,098.64 gallons of water (0.63 oz / sf / day)

* This does not include the moisture transport via air flow through the BES.

Now factor in air transport at 100X migration.

WVT = A x T x delta P x Perms

A = 14,400 (net wall area of a 4 floor 80,000 sf office building)T = 720 (24 hrs x 30 days) $\Delta P = (VP at 85°F x RH) - (VP at 70°F x RH)$ = (0.602 x .65) - (0.7397 x 0.3)= 0.3913 - 0.108= 0.2933

Perms = 40

WVT = 14,400 x 720 x 0.2933 x 40

- = 121,637,376 grains (7,000 grains = 1 lb)
- = 17,376.77 lbs.of water (8.28 lbs of water = 1 gallon)
- = 2,098.64 gallons of water (0.63 oz / sf / day) <u>x100</u>

209,864 gallons of water (63.00 oz / sf / day)

COMMON ABOVE GRADE BES WITH A VAPOR BARRIER

 $WVT = A \times T \times delta P \times Perms$

```
A = 14,400 \text{ (net wall area of a 4 floor 80,000 sf office building )} 
T = 720 \text{ ( 24 hrs x 30 days )} 
\Delta P = (VP at 85°F x RH) - (VP at 70°F x RH) 
= (0.602 x .65) - (0.7397 x 0.3) 
= 0.3913 - 0.108 
= 0.2933 
Perms = 0.1
```

```
WVT = 14,400 x 720 x 0.2933 x 0.1
= 304,093 grains (7,000 grains = 1 lb)
= 43.44 lbs.of water (8.28 lbs of water = 1 gallon)
= 5.25 gallons of water
```

* This does not include the moisture transport via air flow through the BES.
What happens when we factor in moisture transport due to air flow?

A = 14,400 (net wall area of a 4 floor 80,000 sf office building)T = 720 (24 hrs x 30 days) $\Delta P = (VP at 85°F x RH) - (VP at 70°F x RH)$ = (0.602 x .65) - (0.7397 x 0.3)= 0.3913 - 0.108= 0.2933

Perms = 0.1

WVT = 14,400 x 720 x 0.2933 x 0.1 = 304,093 grains (7,000 grains = 1 lb) = 43.44 lbs.of water (8.28 lbs of water = 1 gallon) = 5.25 gallons of water $\frac{x \ 100}{x \ 525}$ gallons of water

* With no drying potential to the inside

If moisture transport due to air flow is not properly dealt with, the water, vapor and heat barriers in the Building Enclosure System can easily become ineffective!

That is why the Building Enclosure System <u>NEEDS</u> an

Air Barrier System.

How Do These Systems Work?

Cold Climate Vapor Permeable Air Barrier System: Winter

Cold Climate Vapor Permeable Air Barrier System: Summer

70° F 30% RH

Cold Climate Air And Vapor Barrier System: Winter

Cold Climate Air And Vapor Barrier System: Summer

Warm Climate Air And Vapor Barrier System

70° F 30% RH

March 24, 2003

2012 IEC Insulation Requirements

				c	PAQUE T	HERMAL	TABLE ENVELOP	C402.1.2 E ASSEM	BLY REQI	JIREMENT	rsª					
CLIMATE ZONE		1		2		3	4 EXCEP	T MARINE	5 AND N	ARINE 4		6		7		8
	All other	Group R	All other	Group R	All other	Group R	All other	Group R	All other	Group R	All other	Group R	All other	Group R	All other	Group R
							Ro	oofs					I	1	L	L
Insulation entirely above deck	U-0.048	U-0.048	U-0.048	U-0.048	U-0.048	U-0.048	U-0.039	U-0.039	U-0.039	U-0.039	U-0.032	U-0.032	U-0.028	U-0.028	U-0.028	U-0.028
Metal buildings	U-0.044	U-0.035	U-0.035	U-0.035	U-0.035	U-0.035	U-0.035	U-0.035	U-0.035	U-0.035	U-0.031	U-0.031	U-0.029	U-0.029	U-0.029	U-0.029
Attic and other	U-0.027	U-0.027	U-0.027	U-0.027	U-0.027	U-0.027	U-0.027	U-0.027	U-0.027	U-0.021	U-0.021	U-0.021	U-0.021	U-0.021	U-0.021	U-0.021
							Walls, Ab	ove Grade					1			
Mass	U-0.142	U-0.142	U-0.142	U-0.123	U-0.110	U-0.104	U-0.104	U-0.090	U-0.078	U-0.078	U-0.078	U-0.071	U-0.061	U-0.061	U-0.061	U-0.061
Metal building	U-0.079	U-0.079	U-0.079	U-0.079	U-0.079	U-0.052	U-0.052	U-0.052	U-0.052	U-0.052	U-0.052	U-0.052	U-0.052	U-0.039	U-0.052	U-0.039
Metal framed	U-0.077	U-0.077	U-0.077	U-0.064	U-0.064	U-0.064	U-0.064	U-0.064	U-0.064	U-0.064	U-0.064	U-0.057	U-0.064	U-0.052	U-0.045	U-0.045
Wood framed and other	U-0.064	U-0.064	U-0.064	U-0.064	U-0.064	U-0.064	U-0.064	U-0.064	U-0.064	U-0.064	U-0.051	U-0.051	U-0.051	U-0.051	U-0.036	U-0.036
							Walls, Be	ow Grade				J		I		
Below-grade wall ^b	C-1.140	C-1.140	C-1.140	C-1.140	C-1.140	C-1.140	C-0.119	C-0.119	C-0.119	C-0.119	C-0.119	C-0.119	C-0.092	C-0.092	C-0.092	C-0.092
							Flo	ors			t			I	I	
Mass	U-0.322	U-0.322	U-0.107	U-0.087	U-0.076	U-0.076	U-0.076	U-0.074	U-0.074	U-0.064	U-0.064	U-0.057	U-0.055	U-0.051	U-0.055	U-0.051
Joist/framing	U-0.066	U-0.066	U-0.033	U-0.033	U-0.033	U-0.033	U-0.033	U-0.033	U-0.033	U-0.033	U-0.033	U-0.033	U-0.033	U-0.033	U-0.033	U-0.033
	L					I	Slab-on-Gr	ade Floors	i	l						
Unheated slabs	F-0.73	F-0.73	F-0.73	F-0.73	F-0.73	F-0.73	F-0.54	F-0.54	F-0.54	F-0.54	F-0.54	F-0.52	F-0.40	F-0.40	E-0.40	E-0.40
Heated slabs	F-0.70	F-0.70	F-0.70	F-0.70	F-0.70	F-0.70	F-0.65	F-0.65	F-0.58	F-0.58	F-0.58	F-0.58	F-0.55	F-0.55	F-0.55	F-0.55

a. Use of opaque assembly U-factors, C-factors, and F-factors from ANSI/ASHRAE/IESNA 90.1 Appendix A shall be permitted, provided the construction complies with the applicable construction details from ANSI/ASHRAE/IESNA 90.1 Appendix A.

b. Where heated slabs are below grade, below-grade walls shall comply with the F-factor requirements for heated slabs.

2012 IEC Insulation Requirements

Walls, Above Grade

Mass	U-0.142	U-0.142	U-0.142	U-0.123	U-0.110	U-0.104	U-0.104	U-0.090	
Metal building	U-0.079	U-0.079	U-0.079	U-0.079	U-0.079	U-0.052	U-0.052	U-0.052	
Metal framed	U-0.077	U-0.077	U-0.077	U-0.064	U-0.064	U-0.064	U-0.064	U-0.064	
Wood framed and other	U-0.064								

2012 IEC Insulation Requirements

TARLE C402.2

C-32

					OPA	QUE THE	RMAL EN	ELOPE R	EQUIREM	IENTS ^a						
		1		2		3	4 EXCEP	T MARINE	5 AND N	ARINE 4	6		7		1	3
CLIMATE ZONE	All Other	Group R	All Other	Group R	All Other	Group R	All Other	Group R								
							R	oofs								
Insulation entirely above deck	R-20ci	R-20ci	R-20ci	R-20ci	R-20ci	R-20ci	R-25ci	R-25ci	R-25ci	R-25ci	R-30ci	R-30ci	R-35ci	R-35ci	R-35ci	R-35ci
Metal buildings (with R-5 thermal blocks) ^{a, b}	R-19 + R-11 LS	R-19 + R-11 LS	R-19 + R11 LS	R-19 + R-11 LS	R-19 + R-11 LS	R-19 + R-11 LS	R-19 + R-11 LS	R-19 + R-11 LS	R-19 + R-11 LS	R-19 + R-11 LS	R-25 + R-11 LS	R-25 + R-11 LS	R-30 + R-11 LS	R-30 + R-11 LS	R-30 + R-11 LS	R-30 + R-11 LS
Attic and other	R-38	R-49														
							Walls, Al	oove Grade					- Provident	1961 (A.)		
Mass	R-5.7ci	R-5.7ci	R-5.7ci	R-7.6ci	R-7.6ci	R-9.5ci	R-9.5ci	R-11.4ci	R-11.4ci	R-13.3ci	R-13.3ci	R-15.2ci	R-15.2ci	R-15.2ci	R-25ci	R-25ci
Metal building	R-13+ R-6.5ci	R-13 + R-6.5ci	R13 + R-6.5ci	R-13 + R-13ci	R-13 + R-6.5ci	R-13 + R-13ci	R-13 + R-13ci	R-13 + R-13ci	R-13 + R-13ci	R-13+ R-19.5ci	R-13 + R-13ci	R-13+ R-19.5ci				
Metal framed	R-13 + R-5ci	R-13 + R-5ci	R-13 + R-5ci	R-13 + R-7.5ci	R-13 + R-7.5ci	R-13 + R-7.5ci	R-13 + R-7.5ci	R-13 + R-15.6ci	R-13 + R-7.5ci	R-13+ R17.5ci						
Wood framed and other	R-13 + R-3.8ci or R-20	R-13 + R-7.5ci or R-20 + R-3.8ci	R-13 + R-15.6ci or R-20 + R-10ci	R-13 + R-15.6ci or R-20 + R-10ci												
							Walls, Be	elow Grade								
Below-grade wall ^d	NR	NR	NR	NR	NR	NR	R-7.5ci	R-7.5ci	R-7.5ci	R-7.5ci	R-7.5ci	R-7.5ci	R-10ci	R-10ci	R-10ci	R-12.5ci
							Fl	oors								21.10.2113
Mass	NR	NR	R-6.3ci	R-8.3ci	R-10ci	R-10ci	R-10ci	R-10.4ci	R-10ci	R-12.5ci	R-12.5ci	R-12.5ci	R-15ci	R-16.7ci	R-15ci	R-16.7ci
Joist/framing	NR	NR	R-30	R-30	R-30 ^e											
						24.2.1.2	Slab-on-G	irade Floors	3							
Unheated slabs	NR	NR	NR	NR	NR	NR	R-10 for 24" below	R-10 for 24" below	R-15 for 24" below	R-15 for 24" below	R-15 for 24" below	R-15 for 24" below	R-20 for 24" below			
Heated slabs ^d	R-7.5 for 12" below	R-7.5 for 12" below	R-7.5 for 12" below	R-7.5 for 12" below	R-10 for 24" below	R-10 for 24" below	R-15 for 24" below	R-15 for 24" below	R-15 for 36" below	R-15 for 36" below	R-15 for 36" below	R-20 for 48" below	R-20 for 24" below	R-20 for 48" below	R-20 for 48" below	R-20 for 48" below
							Opaqu	e Doors								
Swinging	U-0.61	U-0.37	U-0.37	U-0.37	U-0.37	U-0.37	U-0.37	U-0.37	U-0.37							
Roll-up or sliding	R-4.75															
	1	1				1	-	1		1	1	L		1		

For SI: 1 inch = 25.4 mm. ci = Continuous insulation. NR = No requirement.

LS = Liner System - A continuous membrane installed below the purlins and uninterrupted by framing members. Uncompressed, unfaced insulation rests on top of the membrane between the purlins. a. Assembly descriptions can be found in ANSI/ASHRAE/IESNA Appendix A.

b. Where using R-value compliance method, a thermal spacer block shall be provided, otherwise use the U-factor compliance method in Table C402.1.2.

c. R-5.7ci is allowed to be substituted with concrete block walls complying with ASTM C 90, ungrouted or partially grouted at 32 inches or less on center vertically and 48 inches or less on center horizontally, with ungrouted cores filled with materials having a maximum thermal conductivity of 0.44 Btu-in/h-f² °F.

d. Where heated slabs are below grade, below-grade walls shall comply with the exterior insulation requirements for heated slabs.

e. Steel floor joist systems shall be insulated to R-38.

							Walls, Ab	ove Grade		
Mass	R-5.7ci	R-5.7ci	R-5.7ci	R-7.6ci	R-7.6ci	R-9.5ci	R-9.5ci	R-11.4ci	R-11.4ci	R-13.3ci
Metal building	R-13+ R-6.5ci	R-13 + R-6.5ci	R13 + R-6.5ci	R-13 + R-13ci	R-13 + R-6.5ci	R-13 + R-13ci				
Metal framed	R-13 + R-5ci	R-13 + R-5ci	R-13 + R-5ci	R-13 + R-7.5ci						
Wood framed and other	R-13 + R-3.8ci or R-20	R-13 + R-7.5ci or R-20 + R-3.8ci								

U-Factor for metal framed exterior walls in climate zone 5

U-0.064

U-Factor is the inverse of R-Value

R-15.63

Exterior Air Film	R-0.17
Brick Veneer	R-0.44
Air Space	R-1.0
Insulation	?????
Air/Vapor Barrier	0.00
Sheathing	0.56
Metal Studs	0.79
Wallboard	0.53
Paint	0.00
Interior Air Film	<u>0.68</u>

Total Without Insulation4.17

Insulation needs to be R-11.46 or better

CLIMATE ZONE		1		2		3	EXCEPT	4 MARINE	AND M	5 ARINE 4		6		7		8
	All other	Group R	All other	Group R	All other	Group R	All other	Group R	All other	Group R	All other	Group R	All other	Group R	All other	Group R
		,	,				Ro	oofs							-	
Insulation entirely above roof deck	U-0.048	U-0.039	U-0.039	U-0.039	U-0.039	U-0.039	U-0.032	U-0.032	U-0.032	U-0.032	U-0.032	U-0.032	U-0.028	U-0.028	U-0.028	U-0.028
Metal buildings	U-0.044	U-0.035	U-0.035	U-0.035	U-0.035	U-0.035	U-0.035	U-0.035	U-0.035	U-0.035	U-0.031	U-0.031	U-0.029	U-0.029	U-0.029	U-0.029
Attic and other	U-0.027	U-0.027	U-0.027	U-0.027	U-0.027	U-0.027	U-0.027	U-0.027	U-0.027	U-0.021	U-0.021	U-0.021	U-0.021	U-0.021	U-0.021	U-0.021
						-	Walls, ab	ove grade		_	-					
Mass	U-0.151	U-0.151	U-0.151	U-0.123	U-0.123	U-0.104	U-0.104	U-0.090	U-0.090	U-0.080	U-0.080	U-0.071	U-0.071	U-0.061	U-0.061	U-0.061
Metal building	U-0.079	U-0.079	U-0.079	U-0.079	U-0.079	U-0.052	U-0.052	U-0.052	U-0.052	U-0.052	U-0.052	U-0.052	U-0.052	U-0.039	U-0.052	U-0.039
Metal framed	U-0.077	U-0.077	U-0.077	U-0.064	U-0.064	U-0.064	U-0.064	U-0.064	U-0.064	U-0.064	U-0.064	U-0.057	U-0.064	U-0.052	U-0.045	U-0.045
Wood framed and other	U-0.064	U-0.064	U-0.064	U-0.064	U-0.064	U-0.064	U-0.064	U-0.064	U-0.064	U-0.064	U-0.051	U-0.051	U-0.051	U-0.051	U-0.036	U-0.036
	•					•	Walls, be	low grade								Anno,
Below-grade wall ^c	C-1.140°	C-1.140°	C-1.140°	C-1.140°	C-1.140°	C-1.140°	C-0.119	C-0.119	C-0.119	C-0.119	C-0.119	C-0.119	C-0.092	C-0.092	C-0.092	C-0.092
							Flo	ors		4						
Mass ^d	U-0.322°	U-0.322°	U-0.107	U-0.087	U-0.076	U-0.076	U-0.076	U-0.074	U-0.074	U-0.064	U-0.064	U-0.057	U-0.055	U-0.051	U-0.055	U-0.051
Joist/framing	U-0.066°	U-0.066°	U-0.033	U-0.033	U-0.033	U-0.033	U-0.033	U-0.033	U-0.033	U-0.033	U-0.033	U-0.033	U-0.033	U-0.033	U-0.033	U-0.033
				·			Slab-on-g	rade floors		1	L	L				
Unheated slabs	F-0.73°	F-0.73°	F-0.73°	F-0.73°	F-0.73°	F-0.73°	F-0.54	F-0.54	F-0.54	F-0.54	F-0.54	F-0.52	F-0.40	F-0.40	F-0.40	F-0.40
Heated slabs ^f	F-0.70	F-0.70	F-0.70	F-0.70	F-0.70	F-0.70	F-0.65	F-0.65	F-0.65	F-0.65	F-0.58	F-0.58	F-0.55	F-0.55	F-0.55	F-0.55
							Opaqu	e doors								
Swinging	U-0.61	U-0.61	U-0.61	U-0.61	U-0.61	U-0.61	U-0.61	U-0.61	U-0.37	U-0.37	U-0.37	U-0.37	U-0.37	U-0.37	U-0.37	U-0.37
For SI: 1 pound per se ci = Continuous insulu a. Use of Opaque asse with the appropriat b. Opaque assembly <i>U</i> tested design. c. Where heated slabs d. "Mass floors" shall 1. 35 pounds pe 2. 25 pounds pe 2. 25 pounds pe 2. These C-, <i>F</i> - and <i>U</i> f. Evidence of comp Appendix A.	quare foot = ation, NR = 1 embly U-face e constructic U-factors bas are below g include floc er square foo -r square foo -factors are liance with	4.88 kg/m ² , No requirem tors, <i>C</i> -facto on details fro ed on design grade, below ors weighing t of floor suit t of floor suit based on assist the <i>F</i> -facto	l pound per nent, LS = I pors, and F-f orm ANSI/A hs tested in -grade wall not less the fface area v semblies that rs indicated	er cubic foot Liner system actors from SHRAE/ISN accordance s shall comp an: or where the ma at are not rec d in the tabl	= 16 kg/m ³ ANSI/ASH NEA 90.1 A with ASTM oly with the sterial weigh uired to con- e for heater	RAE/IESN, ppendix A. C1363 shal F-factor rec nt is not mor- ntain insulat d slabs shal	A 90.1 App Il be permitt quirements l re than 120 tion. 1 be demon	endix A sha ed. The <i>R</i> -v for heated sl pounds per	Il be permit alue of cont abs. cubic foot. he applicat	ted, provide tinuous insu tion of the t	ed the const lation shall unheated sl	ruction, exc be permitted ab <i>F</i> -factor	luding the c i to be adde s and <i>R-val</i>	ladding syst d to or subtr dues derivec	tem on wall acted from I from ASF	s, complie the origina IRAE 90.

AGREEMENT, AND SUBJECT TO CIVIL

AND CRIMINAL PENALTIES THEREUNDER

- Bernines	1 2 2	A.M.	1 4.7				Walls, ab	ove grade			
Mass	U-0.151	U-0.151	U-0.151	U-0.123	U-0.123	U-0.104	U-0.104	U-0.090	U-0.090	U-0.080	
Metal building	U-0.079	U-0.079	U-0.079	U-0.079	U-0.079	U-0.052	U-0.052	U-0.052	U-0.052	U-0.052	
Metal framed	U-0.077	U-0.077	U-0.077	U-0.064	U-0.064	U-0.064	U-0.064	U-0.064	U-0.064	U-0.064	
Wood framed and other ^c	U-0.064	U-0.064	U-0.064	U-0.064							

		0.0.4					TABLE	C402.1.3		OUNDENE	NTO 01				
		1		2	VELOPET	3	4 EXCEP				NIS, <i>R</i> -V.	ALUE ME	HOD**	7	1
CLIMATE ZONE	All other	Group R	All other	Group R	All other	Group R	All oth								
			-A				R	oofs		1	1	1			1
Insulation entirely above roof deck	R-20ci	R-25ci	R-25ci	R-25ci	R-25ci	R-25ci	R-30ci	R-30ci	R-30ci	R-30ci	R-30ci	R-30ci	R-35ci	R-35ci	R-350
Metal buildings ^b	R-19 + R-11 LS	R-19 + R-11 LS	R-19 + R11 LS	R-19 + R-11 LS	R-19 + R-11 LS	R-19 + R-11 LS	R-19 + R-11 LS	R-19 + R-11 LS	R-19 + R-11 LS	R-19 + R-11 LS	R-25 + R-11 LS	R-25 + R-11 LS	R-30 + R-11 LS	R-30 + R-11 LS	R-30 R-111
Attic and other	R-38	R-49	R-49	R-49	R-49	R-49	R-49								
							Walls, at	ove grade	1		1	l	L	1	1
Mass	R-5.7ci ^e	R-5.7ci ^c	R-5.7ci ^c	R-7.6ci	R-7.6ci	R-9.5ci	R-9.5ci	R-11.4ci	R-11.4ci	R-13.3ci	R-13.3ci	R-15.2ci	R-15.2ci	R-15.2ci	R-25
Metal building	R-13+ R-6.5ci	R-13 + R-6.5ci	R13 + R-6.5ci	R-13 + R-13ci	R-13 + R-6.5ci	R-13 + R-13ci	R-13 + R-13ci	R-13 + R-13ci	R-13 + R-13ci	R-13+ R-19.5ci	R-13 R-13				
Metal framed	R-13 + R-5ci	R-13 + R-5ci	R-13 + R-5ci	R-13 + R-7.5ci	R-13 + R-7.5ci	R-13 + R-7.5ci	R-13 + R-7.5ci	R-13 + R-15.6ci	R-13 R-7.5						
Wood framed and other	R-13 + R-3.8ci or R-20	R-13 + R-3.8ci or R-20	R-13 + R-7.5ci or R-20 + R-3.8ci	R-13 + R-7.5ci or R-20 + R-3.8ci	R-13 + R-7.5ci or R-20 + R-3.8ci	R-13 + R-7.5ci or R-20 + R-3.8ci	R-13 + R-7.5ci or R-20 + R-3.8ci	R13 R-15.0 or R-2 + R-10							
							Walls, be	elow grade							
Below-grade wall ^d	NR	NR	NR	NR	NR	NR	R-7.5ci	R-7.5ci	R-7.5ci	R-7.5ci	R-7.5ci	R-7.5ci	R-10ci	R-10ci	R-10
							Fle	oors							
Mass ^e	NR	NR	R-6.3ci	R-8.3ci	R-10ci	R-10ci	R-10ci	R-10.4ci	R-10ci	R-12.5ci	R-12.5ci	R-12.5ci	R-15ci	R-16.7ci	R-15
Joist/framing	NR	NR	R-30	R-30	R-30 ^f	R-30 ^f	R-30 ^f	R-30							
					-		Slab-on-g	rade floors							
Unheated slabs	NR	NR	NR	NR	NR	NR	R-10 for 24" below	R-10 for 24" below	R-10 for 24" below	R-10 for 24" below	R-10 for 24" below	R-15 for 24" below	R-15 for 24" below	R-15 for 24" below	R-15 f 24" bel
Heated slabs	R-7.5 for 12" below	R-7.5 for 12" below	R-7.5 for 12" below	R-7.5 for 12" below	R-10 for 24" below	R-10 for 24" below	R-15 for 24" below	R-15 for 24" below	R-15 for 36" below	R-15 for 36" below	R-15 for 36" below	R-20 for 48" below	R-20 for 24" below	R-20 for 48" below	R-20 f 48" bel
							Opaqu	e doors							
Nonswinging	R-4.75	R-4 75	R-4.75	R-475	R-475	R-475	R-4.75	R-47							

ci = Continuous insulation, NR = No requirement, LS = Liner system.

a. Assembly descriptions can be found in ANSI/ASHRAE/IESNA Appendix A.

b. Where using R-value compliance method, a thermal spacer block shall be provided, otherwise use the U-factor compliance method in Table C402.1.4.

c. R-5.7ci is allowed to be substituted with concrete block walls complying with ASTM C 90, ungrouted or partially grouted at 32 inches or less on center vertically and 48 inches or less on center horizontally. with ungrouted cores filled with materials having a maximum thermal conductivity of 0.44 Btu-in/h-f2 °F.

d. Where heated slabs are below grade, below-grade walls shall comply with the exterior insulation requirements for heated slabs.

e. "Mass floors" shall include floors weighing not less than:

1. 35 pounds per square foot of floor surface area; or

2. 25 pounds per square foot of floor surface area where the material weight is not more than 120 pounds per cubic foot.

f. Steel floor joist systems shall be insulated to R-38.

C-33 pursuant to License Agreement with ICC. No further reprodu OF THE FEDERAL COPYRIGHT ACT AND THE LICENSE

I

		1					Walls, ab	ove grade			
Mass	R-5.7ci ^c	R-5.7ci ^c	R-5.7ci ^c	R-7.6ci	R-7.6ci	R-9.5ci	R-9.5ci	R-11.4ci	R-11.4ci	R-13.3ci	
Metal building	R-13+ R-6.5ci	R-13 + R-6.5ci	R13 + R-6.5ci	R-13 + R-13ci	R-13 + R-6.5ci	R-13 + R-13ci					
Metal framed	R-13 + R-5ci	R-13 + R-5ci	R-13 + R-5ci	R-13 + R-7.5ci							
Wood framed and other	R-13 + R-3.8ci or R-20	R-13 + R-3.8ci or R-20	R-13 + R-7.5ci or R-20 + R-3.8ci								

TABLE C402.1.4.1 EFFECTIVE R-VALUES FOR STEEL STUD WALL ASSEMBLIES									
NOMINAL STUD DEPTH (inches)	SPACING OF FRAMING (inches)	CAVITY <i>R</i> -VALUE (insulation)	CORRECTION FACTOR (F _c)	EFFECTIVE R-VALUE (ER) (Cavity R -Value $\times F_c$)					
21/	16	13	0.46	5.98					
572	10	15	0.43	6.45					
21/	24	13	0.55	7.15					
572	24	15	0.52	7.80					
-	16	19	0.37	7.03					
0	10	21	0.35	7.35					
	24	19	0.45	8.55					
6	24	21	0.43	9.03					
	16	25	0.31	7.75					
8	24	25	0.38	9.50					

C202 Definition of Continuous Insulation

CONTINUOUS INSULATION (ci). Insulating material that is continuous across all structural members without thermal bridges other than fasteners and service openings. It is installed on the interior or exterior or is integral to any opaque surface of the building envelope.

Say "Goodbye" to z-furring

U-Factor for metal framed exterior walls in climate zone 5

U-0.064

U-Factor is the inverse of R-Value

R-15.63

Exterior Air Film	R-0.17
Brick Veneer	R-0.44
Air Space	R-1.0
Insulation	?????
Air/Vapor Barrier	0.00
Sheathing	0.56
Metal Studs	0.79
Wallboard	0.53
Paint	0.00
Interior Air Film	<u>0.68</u>

Total Without Insulation4.17

Insulation needs to be R-11.46 or better

BIA Tech Notes

SPF In Cavity

3 1/2 " of 2 lb Density Closed-Cell SPF (R-6.7 / inch thickness)

= R-23.45 insulation layer

Leaves 1" cavity

Assembly: R-27.62

Code Requirements:

2012 IEC: R-15.63

90.1 2013: R-18.18

Good applicators can control the thickness

Polyisocyanurate In Cavity

3 1/2" polyiso in cavity (R-6.5 / inch thickness)

= R-22.75 insulation layer

Leaves 1" cavity

Multiple layer installation (2" + 1 1/2 ")

Assembly: R-26.92

Code Requirements:

2012 IEC: R-15.63

90.1 2013: R-18.18

XPS In Cavity

3 1/2" XPS in cavity (R-5 / inch thickness)

= R-17.5 insulation layer

Leaves 1" cavity

Multiple layer installation (2" + 1 1/2 ")

Assembly: R-21.67

Code Requirements:

2012 IEC: R-15.63

90.1 2013: R-18.18

Rock or Mineral Wool In Cavity

3 1/2" mineral wool in cavity (R-4.2 / inch thickness)

= R-14.7 insulation layer

Leaves 1" cavity

Multiple layer installation

Assembly: R-18.87

Code Requirements:

2012 IEC: R-15.63

90.1 2013: R-18.18

EPS In Cavity

3 1/2" EPS in cavity (R-4 / inch thickness)

= R-14 insulation layer

Leaves 1" cavity

Multiple layer installation (2" + 1 1/2")

Assembly: R-18.17

Code Requirements:

2012 IEC: R-15.63

90.1 2013: R-18.18

NFPA 285

Burn test for exterior wall assemblies over two floors (40 feet) in height that includes plastic insulation outboard of the sheathing and / or a weather resistive barrier.

Adopted in the 2006 International Building Code (IBC).

