

Whole Building Airtightness: A 439 Building Study of Performance

Mike Poirier

QED Lab Troutdale, Oregon

AIA Continuing Education Provider Whole Building Airtightness: A 439 Building Study of Performance

- 11 years testing experience
- 9 years enclosure consulting experience
- Loves motorcycles, roller coasters, traveling

Mike Poirier Vice-President at QED Lab, Inc in Troutdale, Oregon

> Certified Level 2 Infrared Thermographer

AAMA Fenestration Master

Certified Level 3 Blower Door Testing Technician

Learning Objectives

- Identify a baseline performance for airtightness in commercial buildings.
- 2. Compare test results to everchanging energy code requirements.
- 3. Learn common mistakes in design and craftsmanship which cause test failures and significant air leaks.
- 4. Review conditions proven to perform

Thank You to Our PLATINUM SPONSOR

HIGH PERFORMANCE AIR & MOISTURE BARRIERS

Thank You to Our Sponsors

Media Partners

CoatingsPro

Whole Building Airtightness:

A 439 Building Study of Performance

579

□ Includes results from January 2016 – March 2023

- **Commercial buildings only (@75 Pa)**
- **Given Specimens located across 5 states (OR, WA, CA, ID, TX)**
- Testing required by energy code, specification, USACE, or other program

Maximum Leakage @ 75 Pa

Common Code & Specification Maximums

Year	Jurisdiction / Document	Leakage @ 75 Pa
2018	Washington State Energy Code	.25 CFM/SF
2018	City of Seattle, WA Energy Code	.25 CFM/SF
2019	California Building Energy Efficiency Standards	.40 CFM/SF
2019	ASHRAE 90.1	.40 CFM/SF
2020	New York Energy Code	.40 CFM/SF
2019	Oregon Zero Energy Ready Commercial Code	.40 CFM/SF (per ASHRAE 90.1)
2021	City of Austin, TX	.40 CFM/SF (per ASHRAE 90.1)

Actual Building Performance

Year	Best (CFM/SF)	Worst (CFM/SF)	Average	Specimens Tested	Airtightness Testing Annual Results								
					0.40			0.351					
2016	.037	.478	.331	48	0.35		0.314		0.311				
2017	.073	.518	.294	53	0.30	0.300	_	_		0.287	0.263	0.26	0.263
2018	.065	1.05	.328	59	0.25	-	_	_	-	-			
2019	.039	.553	.336	76	0.20	_			-1-				_
2020	.043	.961	.305	83	0.15	_	_	_	-1-	_			_
2021	.074	.569	.284	120	0.10	_	_		-1-				
2022	.051	.505	.283	102	0.05	_		_	-1-	_			_
2023 (Jan —	.150	1.31	.366	38	0.00								
Mar)						2016	2017	2018	2019	2020	2021	2022	2023

Failure Rates

Pass / Fail Comparison

What happened in 2022 / 2023?

Failure Rates

What happened in 2022 / 2023?

- Supply chain problems
 Product substitutions
 - Labor shortages
 - Rushed installations
 - Code changes

What happened in 2022 / 2023?

Manufacturing Errors
Incompleteness

#1 Parapet Details

#2 Coiling and Panel Overhead Doors

#3 PTAC and VTAC Units

Incomplete Enclosure

Details Proven to Perform: Wall Systems

- Seal all penetrations prior to cladding installation
- Install air barrier prior to electrical meter mounting
- Seal all seams and transitions

Details Proven to Perform: Parapets & Roofs

- Seal parapet walls to roof and wall air barrier
- Welded seams at TPO roof, cinch bands on pipe penetrations
- Extend roofing up parapet wall for wall air barrier connection

Details Proven to Perform: Windows & Doors

- Extend air barrier from RO to interior
- Seal window to RO air barrier
- Set door thresholds in sealant, or use sill pan with interior back-dam to accept a sealant joint

Review

- Ever-changing energy codes require everchanging products, details, and installation procedures
- Roughly 20% of commercial buildings result in failed blower door test results
- Be careful with product substitutions and availability
- Avoid standard coiling doors and overhead doors

- Consider common weak details in airtightness design
- Use of Infrared Thermography is a great tool for identifying suspicious air leakage zones
- Make sure your test is performed accurately, which includes appropriate building