a baa 2024 building enclosure conference

Re-Thinking Your Insulation Strategies

Len Anastasi EXO-TEC Consulting

Re-Thinking Your Insulation Strategies

Presented by:

Len Anastasi President

FABAA, CSI, CDT WUFI® Certified, WUFI Advanced Certified

Copyright Materials

This presentation is protected by US and International copyright laws. Reproduction, distribution, display and use of the presentation without permission of the speaker is prohibited.

Learning Objectives

Upon completing this program, the participant should understand

1.) Learn the prescriptive exterior wall insulation requirements in the current International Energy Code.

2.) Learn the performance exterior wall insulation requirements in the current International Energy Code.

3.) Learn that complying with the prescriptive requirements of the code can result in exterior wall assembly failures.

4.) Learn how to avoid exterior wall assembly failures while complying with the code.

The Four Barriers

- HAMM is the 4 barriers needed to protect a building against the effects of weather. These barriers are:
- H Heat Barrier
- A Air Barrier
- M∟ Water Barrier (Liquid Moisture)
- Mv Vapor Barrier (Gaseous Moisture)

HAMM is the WEATHER BARRIER SYSTEM

THE HEAT BARRIER

- Resists thermal transfer through the building enclosure system.
 - R-Value is the measure of resistance to thermal transfer.
 - The higher the R-Value, the greater the resistance.
 - The greater the resistance, the lower the heat gain / loss.
- The location of the heat barrier, in a properly designed and constructed building enclosure system, determines the location of the dew point.

THE HEAT BARRIER

Functions

- Prevents thermal loss, gain and bridging
- Wetting potential due to a dew point (location)

THE HEAT BARRIER

Second Law Of Thermodynamics

"The entropy of an isolated system which is not in equilibrium will tend to increase over time, approaching a maximum value at equilibrium. "

Translation anyone???

Heat seeks cold!!!

THERMAL PERFORMANCE

Factors affecting thermal performance of insulation

• Air leakage through gaps in the insulation

• Wind wash effect on fibrous insulation

Thermal Bridging

THERMAL BRIDGING

What is the R-Value of a 6" LGMF wall with R-19 batts insulation, exterior gypsum sheathing and interior gypsum wallboard?

TABLE C402.1.4.2

EFFECTIVE R-VALUES FOR STEEL STUD WALL ASSEMBLIES

NOMINAL STUD DEPTH (inches)	SPACING OF FRAMING (inches)	CAVITY <i>R</i> -VALUE (insulation)	CORRECTION FACTOR (F_)	EFFECTIVE <i>R</i> -VALUE (ER) (Cavity <i>R</i> -Value × <i>F_c</i>)	
3 ¹ / ₂	16	13	0.46	5.98	
572	10	15	0.43	6.45	
3 ¹ / ₂	24	13	0.55	7.15	
572	24	15	0.52	7.80	
6	16	19	0.37	7.03	
0	10	21	0.35	7.35	
6	24	19	0.45	8.55	
0	24	21	0.43	9.03	
8	16	25	0.31	7.75	
0	24	25	0.38	9.50	

For SI: 1 inch = 25.4 mm.

The Prescriptive Requirements

Table 401.1.3

C4-3

CLIMATE ZONE	0 AI	ND 1	2		3		4 EXCEP	T MARINE	ARINE 5 AND M		6			7		8	
	All other	Group R	All other	Group R	All other	Group R	All other	Group R	All other	Group R	All other	Group R	All other	Group R	All other	Group F	
							Ro	ofs									
Insulation entirely above roof deck	R-20ci	R-25ci	R-25ci	R-25ci	R-25ci	R-25ci	R-30ci	R-30ci	R-30ci	R-30ci	R-30ci	R-30ci	R-35ci	R-35ci	R-35ci	R-35ci	
Metal buildings ^b	R-19 + R-11 LS	R-19 + R-11 LS	R-19 + R11 LS	R-19 + R-11 LS	R-19 + R-11 LS	R-19 + R-11 LS	R-19 + R-11 LS	R-19 + R-11 LS	R-19 + R-11 LS	R-19 + R-11 LS	R-25 + R-11 LS	R-30 + R-11 LS	R-30 + R-11 LS	R-30 + R-11 LS	R-25 + R-11 + R-11 LS	R-25 + R-11 + R-11 LS	
Attic and other	R-38	R-38	R-38	R-38	R-38	R-38	R-49	R-49	R-49	R-49	R-49	R-49	R-60	R-60	R-60	R-60	
							Walls, ab	ove grade									
Mass ^r	R-5.7ci ^c	R-5.7ci ^c	R-5.7ci ^c	R-7.6ci	R-7.6ci	R-9.5ci	R-9.5ci	R-11.4ci	R-11.4ci	R-13.3ci	R-13.3ci	R-15.2ci	R-15.2ci	R-15.2ci	R-25ci	R-25ci	
Metal building	R-13 + R-6.5ci	R-13 + R-6.5ci	R13 + R- 6.5ci	R-13 + R-13ci	R-13 + R-6.5ci	R-13 + R-13ci	R-13 + R-13ci	R-13 + R-14ci	R-13 + R-17ci	R-13 + R-19.5ci	R-13 + R-19.5ci	R-13 + R-19.5c					
Metal framed	R-13 + R-5ci	R-13 + R-5ci	R-13 + R-5ci	R-13 + R-7.5ci	R-13 + R-7.5ci	R-13 + R-7.5ci	R-13 + R-7.5ci	R-13 + R-7.5ci	R-13 + R-10ci	R-13 + R-10ci	R-13 + R-12.5ci	R-13 + R-12.5ci	R-13 + R-12.5ci	R-13 + R-15.6ci	R-13 + R-18.8ci	R-13 + R-18.8c	
Wood framed and other	R-13 + R-3.8ci or R-20	R-13 + R-3.8ci or R-20	R-13 + R-3.8ci or R-20	R-13 + R-3.8ci or R-20	R-13 + R-3.8ci or R-20	R-13 + R-3.8ci or R-20	R-13 + R-3.8ci or R-20	R-13 + R-3.8ci or R-20	R-13 + R-7.5ci or R20 + R3.8ci	R-13 + R-7.5ci or R-20 + R-3.8ci	R-13 + R-7.5ci or R-20+ R-3.8ci	R-13 + R-18.8ci	R-13 + R-18.8c				
							Walls, be	low grade									
Below-grade wall ^d	NR	NR	NR	NR	NR	NR	R-7.5ci	R-10ci	R-7.5ci	R-10ci	R-10ci	R-15ci	R-15ci	R-15ci	R-15ci	R-15ci	
							Flo	ors									
Mass ^e	NR	NR	R-6.3ci	R-8.3ci	R-10ci	R-10ci	R-14.6ci	R-16.7ci	R-14.6ci	R-16.7ci	R-16.7ci	R-16.7ci	R-20.9ci	R-20.9ci	R-23ci	R-23ci	
Joist/framing	R-13	R-13	R-30	R-30	R-30	R-30	R-30	R-30	R-30	R-30	R-38	R-38	R-38	R-38	R-38	R-38	
							Slab-on-gr	ade floors			I						
Unheated slabs	NR	NR	NR	NR	NR	R-10 for 24" below	R-15 for 24" below	R-15 for 24" below	R-15 for 24" below	R-20 for 24" below	R-20 for 24" below	R-20 for 48" below	R-20 for 24" below	R-20 for 48" below	R-20 for 48" below	R-25 for 48" below	
Heated slabs ^g	R-7.5 for 12" below+ R-5 full slab	R-7.5 for 12" below+ R-5 full slab	R-7.5 for 12" below+ R-5 full slab	R-7.5 for 12" below+ R-5 full slab	R-10 for 24" below+ R-5 full slab	R-10 for 24" below+ R-5 full slab	R-15 for 24" below+ R-5 full slab	R-15 for 24" below+ R-5 full slab	R-15 for 36" below+ R-5 full slab	R-15 for 36" below+ R-5 full slab	R-15 for 36" below+ R-5 full slab	R-20 for 48" below+ R-5 full slab					

TABLE C402.1.3 OPAQUE THERMAL ENVELOPE INSULATION COMPONENT MINIMUM REQUIREMENTS, *R*-VALUE METHOD^a

For SI: 1 inch = 25.4 mm, 1 pound per square foot = 4.88 kg/m², 1 pound per cubic foot = 16 kg/m³.

ci = Continuous Insulation, NR = No Requirement, LS = Liner System.

a. Assembly descriptions can be found in ANSI/ASHRAE/IESNA 90.1 Appendix A.

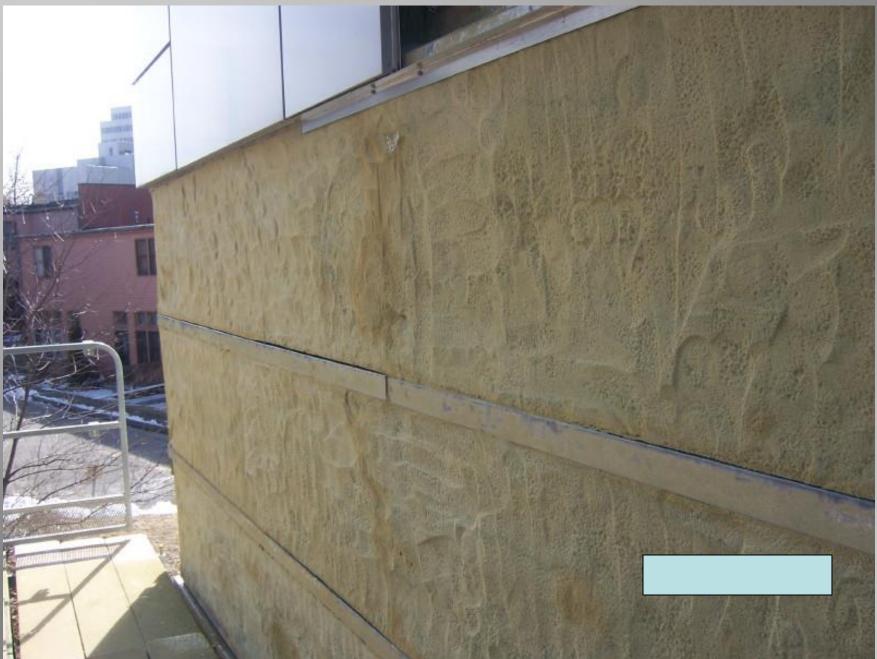
b. Where using R-value compliance method, a thermal spacer block shall be provided, otherwise use the U-factor compliance method in Table C402.1.4.

c. R-5.7ci is allowed to be substituted with concrete block walls complying with ASTM C90, ungrouted or partially grouted at 32 inches or less on center vertically and 48 inches or less on center horizontally, with ungrouted cores filled with materials having a maximum thermal conductivity of 0.44 Btu-in/h-f² oF.

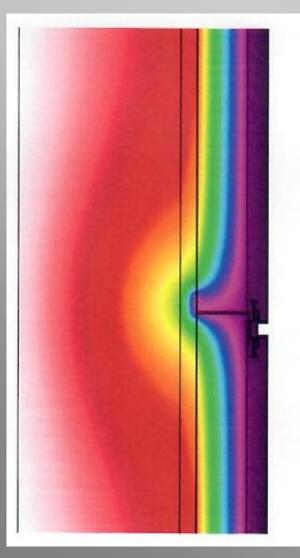
d. Where heated slabs are below grade, below-grade walls shall comply with the exterior insulation requirements for heated slabs.

e. "Mass floors" shall be in accordance with Section C402.2.3.

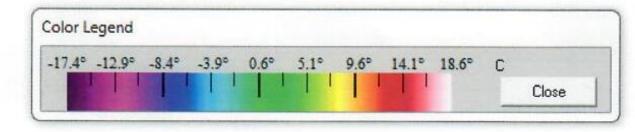
f. "Mass walls" shall be in accordance with Section C402.2.2.


g. The first value is for perimeter insulation and the second value is for full, under-slab insulation. Perimeter insulation is not required to extend below the bottom of the slab.

2018 IEC


C202 Definition of Continuous Insulation

CONTINUOUS INSULATION (ci). Insulating material that is continuous across all structural members without thermal bridges other than fasteners and service openings. It is installed on the interior or exterior or is integral to any opaque surface of the building envelope.


Is this continuous insulation?

Thermal Bridging Effect Of Continuous Z-Furring

43% reduction in effectiveness of the insulation layer.

The Performance Requirements

Table 401.1.4

TABLE C402.1.4								
OPAQUE THERMAL ENVELOPE ASSEMBLY MAXIMUM REQUIREMENTS, U-FACTOR METH	IOD ^{a, b}							

CLIMATE ZONE	0 AI	ND 1	:	2		3	4 EXCEP	MARINE	5 AND N	ARINE 4		6	1	7	1	3
	All other	Group R	All other	Group R	All other	Group R	All other	Group R	All other	Group R	All other	Group R	All other	Group R	All other	Group R
							Roo	fs								
Insulation entirely above roof deck	U-0.048	U-0.039	U-0.039	U-0.039	U-0.039	U-0.039	U-0.032	U-0.032	U-0.032	U-0.032	U-0.032	U-0.032	U-0.028	U-0.028	U-0.028	U-0.028
Metal buildings	U-0.035	U-0.035	U-0.035	U-0.035	U-0.035	U-0.035	U-0.035	U-0.035	U-0.035	U-0.035	U-0.031	U-0.029	U-0.029	U-0.029	U-0.026	U-0.026
Attic and other	U-0.027	U-0.027	U-0.027	U-0.027	U-0.027	U-0.027	U-0.021	U-0.021	U-0.021	U-0.021	U-0.021	U-0.021	U-0.017	U-0.017	U-0.017	U-0.017
							Walls, abo	ve grade								
Mass ^f	U-0.151	U-0.151	U-0.151	U-0.123	U-0.123	U-0.104	U-0.104	U-0.090	U-0.090	U-0.080	U-0.080	U-0.071	U-0.071	U-0.071	U-0.037	U-0.037
Metal building	U-0.079	U-0.079	U-0.079	U-0.079	U-0.079	U-0.052	U-0.052	U-0.050	U-0.050	U-0.050	U-0.050	U-0.050	U-0.044	U-0.039	U-0.039	U-0.039
Metal framed	U-0.077	U-0.077	U-0.077	U-0.064	U-0.064	U-0.064	U-0.064	U-0.064	U-0.055	U-0.055	U-0.049	U-0.049	U-0.049	U-0.042	U-0.037	U-0.037
Wood framed and other ^c	U-0.064	U-0.064	U-0.064	U-0.064	U-0.064	U-0.064	U-0.064	U-0.064	U-0.051	U-0.051	U-0.051	U-0.051	U-0.051	U-0.051	U-0.032	U-0.032
							Walls, belo	w grade								
Below-grade wall ^c	C-1.140 ^e	C-0.119	C-0.092	C-0.119	C-0.092	C-0.092	C-0.063	C-0.063	C-0.063	C-0.063	C-0.063					
							Floo	rs								
Mass ^d	U-0.322e	U-0.322°	U-0.107	U-0.087	U-0.074	U-0.074	U-0.057	U-0.051	U-0.057	U-0.051	U-0.051	U-0.051	U-0.042	U-0.042	U-0.038	U-0.038
Joist/framing	U-0.066°	U-0.066e	U-0.033	U-0.033	U-0.033	U-0.033	U-0.033	U-0.033	U-0.033	U-0.033	U-0.027	U-0.027	U-0.027	U-0.027	U-0.027	U-0.027
						S	lab-on-gra	de floors								
Unheated slabs	F-0.73 ^e	F-0.73 ^e	F-0.73°	F-0.73 ^e	F-0.73°	F-0.54	F-0.52	F-0.52	F-0.52	F-0.51	F-0.51	F-0.434	F-0.51	F-0.434	F-0.434	F-0.424
Heated slabs	F-0.69	F-0.69	F-0.69	F-0.69	F-0.66	F-0.66	F-0.62	F-0.62	F-0.62	F-0.62	F-0.62	F-0.602	F-0.602	F-0.602	F-0.602	F-0.602
							Opaque	doors								
Nonswinging door	U-0.31	U-0.31	U-0.31	U-0.31	U-0.31	U-0.31	U-0.31	U-0.31	U-0.31	U-0.31	U-0.31	U-0.31	U-0.31	U-0.31	U-0.31	U-0.31
Swinging door ^g	U-0.37	U-0.37	U-0.37	U-0.37	U-0.37	U-0.37	U-0.37	U-0.37	U-0.37	U-0.37	U-0.37	U-0.37	U-0.37	U-0.37	U-0.37	U-0.37
Garage door < 14% glazing ^h	U-0.31	U-0.31	U-0.31	U-0.31	U-0.31	U-0.31	U-0.31	U-0.31	U-0.31	U-0.31	U-0.31	U-0.31	U-0.31	U-0.31	U-0.31	U-0.31

For SI: 1 pound per square foot = 4.88 kg/m^2 , 1 pound per cubic foot = 16 kg/m^3 .

ci = Continuous Insulation, NR = No Requirement, LS = Liner System.

a. Where assembly U-factors, C-factors and F-factors are established in ANSI/ASHRAE/IESNA 90.1 Appendix A, such opaque assemblies shall be a compliance alternative where those values meet the criteria of this table, and provided that the construction, excluding the cladding system on walls, complies with the appropriate construction details from ANSI/ASHRAE/ISNEA 90.1 Appendix A.

b. Where U-factors have been established by testing in accordance with ASTM C1363, such opaque assemblies shall be a compliance alternative where those values meet the criteria of this table. The R-value of continuous insulation shall be permitted to be added to or subtracted from the original tested design.

c. Where heated slabs are below grade, below-grade walls shall comply with the U-factor requirements for above-grade mass walls.

d. "Mass floors" shall be in accordance with Section C402.2.3.

e. These C-, F- and U-factors are based on assemblies that are not required to contain insulation.

f. "Mass walls" shall be in accordance with Section C402.2.2.

g. Swinging door U-factors shall be determined in accordance with NFRC-100.

h. Garage doors having a single row of fenestration shall have an assembly U-factor less than or equal to 0.44 in Climate Zones 0 through 6 and less than or equal to 0.36 in Climate Zones 7 and 8, provided that the fenestration area is not less than 14 percent and not more than 25 percent of the total door area.

The U-Factor is the overall heat transfer coefficient of an assembly.

U-Factor for metal framed exterior walls in climate zone 5

U-0.055

U-Factor is the inverse of R-Value

R-18.18

EFFECTIVE	and a second s	ABLE C402.1	.4.2 STUD WALL A	SSEMBLIES
NOMINAL STUD DEPTH (inches)	SPACING OF FRAMING (inches)	CAVITY <i>R</i> -VALUE (insulation)	CORRECTION FACTOR (F_)	EFFECTIVE <i>R</i> -VALUE (ER) (Cavity <i>R</i> -Value × <i>F_c</i>)
$3^{1}/_{2}$	16	13	0.46	5.98
5_{2}	10	15	0.43	6.45
21/	24	13	0.55	7.15
3 ¹ / ₂	24	15	0.52	7.80
6	16	19	0.37	7.03
0	10	21	0.35	7.35
6	24	19	0.45	8.55
6	24	21	0.43	9.03
8	16	25	0.31	7.75
0	24	25	0.38	9.50

For SI: 1 inch = 25.4 mm.

The Prescriptive Requirements

Table 402.1.4.1

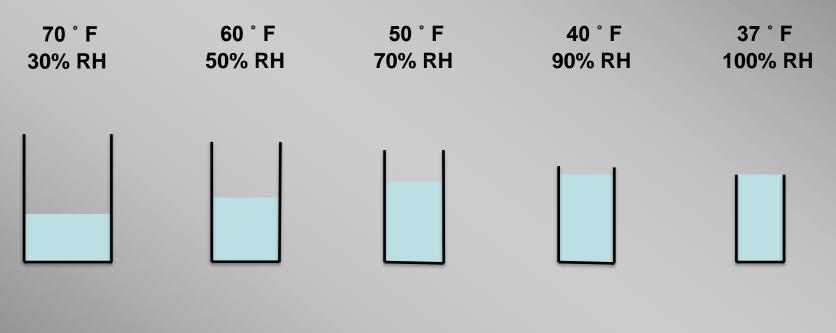
R-13 insulation in LGMF = R-5.98

Table 402.1.3

Continuous insulation = R-10

Total Insulation R-value = 15.98

Need another R-2.2 from other elements in the assembly!!!


Envelope Backstops

An envelope backstop is a provision that limits the ability of a design team to trade better performing internal systems (HVAC, lighting, etc.) for envelope energy efficiency in the performance compliance paths.

The Dew Point

The dew point is the temperature at which air that contains a certain amount of vapor can no longer hold that vapor and must exhaust itself of excess vapor by depositing it on adjacent surfaces in the form of condensation (water).

The Dew Point

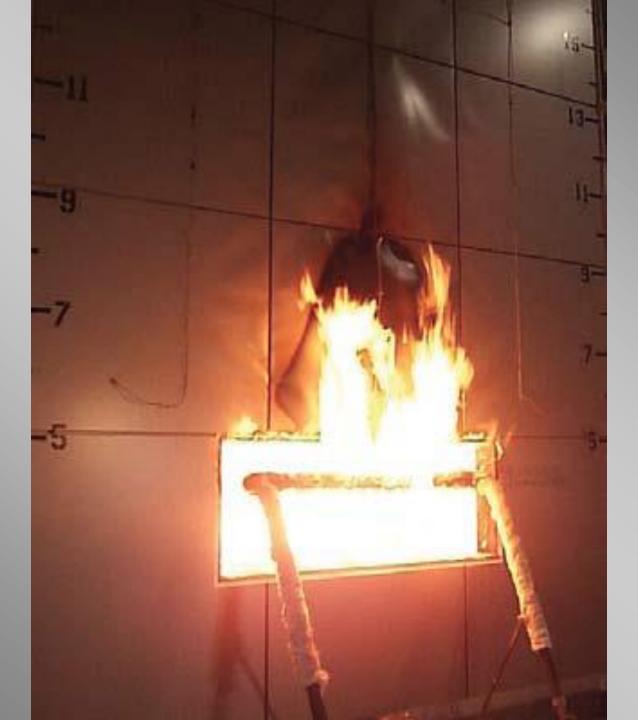
Dew Point

Where does the water on the outside of the glass come from?

Dew Point Calculator

Air																			
Temp °F	100	95	90	85	80	75	70	65	60	55	50	45	40	35	30	25	20	15	10
110	110	108	106	104	102	100	98	95	93	90	87	84	80	76	72	65	60	51	41
105	105	103	101	99	97	95	93	91	88	85	83	80	76	72	67	62	55	47	37
100	100	99	97	95	93	91	89	86	84	81	78	75	71	67	63	58	52	44	32
95	95	93	92	90	88	86	84	81	79	76	73	70	67	63	59	54	48	40	32
90	90	88	87	85	83	81	79	76	74	71	68	65	62	59	54	49	43	36	32
85	85	83	81	80	78	76	74	72	69	67	64	61	58	54	50	45	38	32	
80	80	78	77	75	73	71	69	67	65	62	59	56	53	50	45	40	35	32	
75	75	73	72	70	68	66	64	62	60	58	55	52	49	45	41	36	32	1	51
70	70	68	67	65	63	61	59	57	55	53	50	47	44	40	37	32			
65	65	63	62	60	59	57	55	53	50	48	45	42	40	36	32				
60	60	58	57	55	53	52	50	48	45	43	41	38	35	32	1				
55	55	53	52	50	49	47	45	43	40	38	36	33	32	-1					
50	50	48	46	45	44	42	40	38	36	34	32	1		S.C.					
45	45	43	42	40	39	37	35	33	32	-									
40	40	39	37	35	34	32		a second	1,000,000										
35	35	34	32	-	the beauty	and frames													
32	32																		

The dew point is the temperature at which condensation forms on condensing surfaces. When air comes into contact with a surface that is at or below the dew point temperature of that air, condensation will form on it.


EXAMPLE 1: If the interior air temperature is 70° F and has an RH of 30%, the infiltration of air that is 37° F (the dew point temperature) can cool condensing surfaces to this temperature (37°) causing dew to form on these surfaces.

EXAMPLE 2: If exterior air with a temperature of 85° F and an RH of 70% infiltrates into the building envelope, dew will form on condensing surfaces in the system that have temperatures of 74° F or less.

Burn test for exterior wall assemblies over two floors (40 feet) in height that includes plastic insulation outboard of the sheathing and / or a weather resistive barrier.

Adopted in the 2006 International Building Code (IBC).

Prescriptive Requirements High Moisture Load

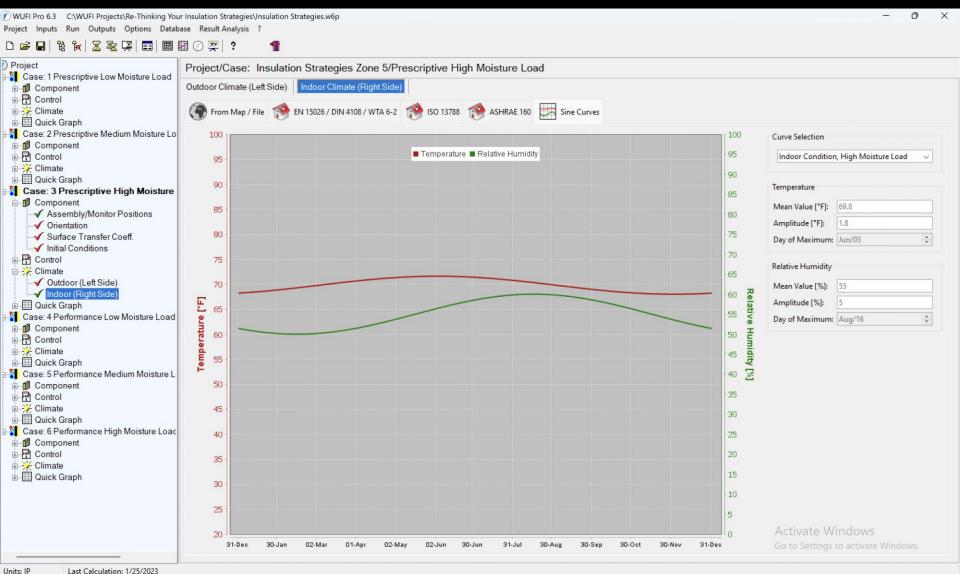
• • • •	,	Windows 11	= ∰ D ⊗ ⊕ 4 ∳ ⊖ C ≥ ◄ ↔
 WUFI Pro 6.7 C:\WUFI Projects\Re-Thinking Yo Project Inputs Run Outputs Options Data 	ase Result Analysis ?		- 0 X
Project Case: 1 Prescriptive Code Req Component Assembly/Monitor Positions Orientation Surface Transfer Coeff. Initial Conditions Climate Quick Graph Case: 2 Prescriptive Code Requirerr Control Control Control Control Control Control Control Component Component Component Component Component Control Contro		e Transfer Coeff. Initial Conditions Thickn. [in] 20 Pr (Right Side) 2362 0.625 Particular Sources, Sinks Particular Sources, S	
⊕- Quick Graph ⊖- Case: 8 Performance Requirements ⊕- ∅ Component ⊕ ⊕ ᠃ Control ●			Activate Windows Go to Settings to activate Windows.
Units: IP Last Calculation: 4/19/2023	Q Search		∧ (⊕ ⊄)) 🖢 3:29 PM 💭 3/14/2024 💭

C

Hygrothermal Analysis

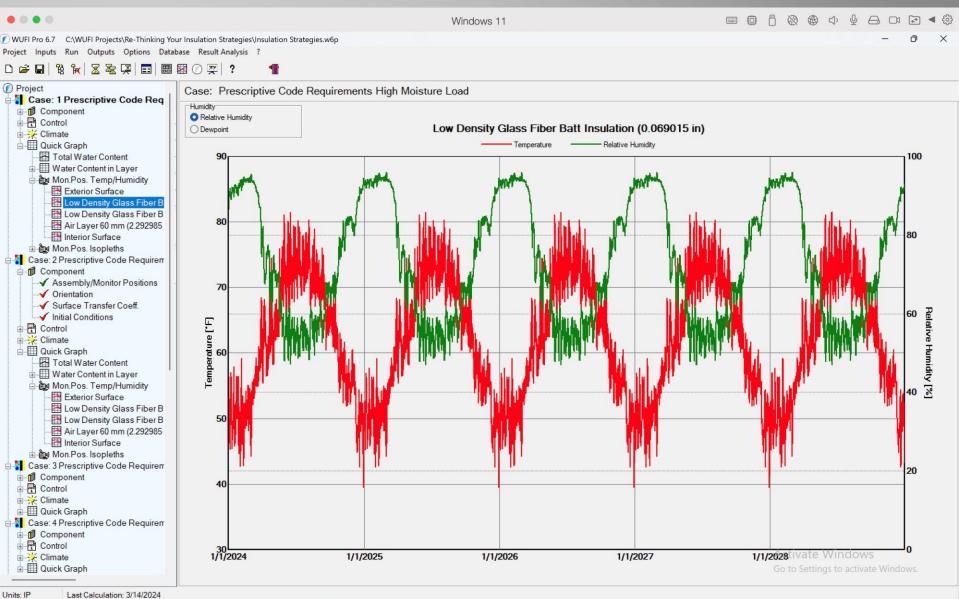
The Failure Criteria

1.) 100% RH (condensation) within the assembly to the interior of the water barrier.


2.) RH levels above 80% for extended periods of time within the LGMF.

3.) Moisture content of moisture sensitive materials increasing from year to year.

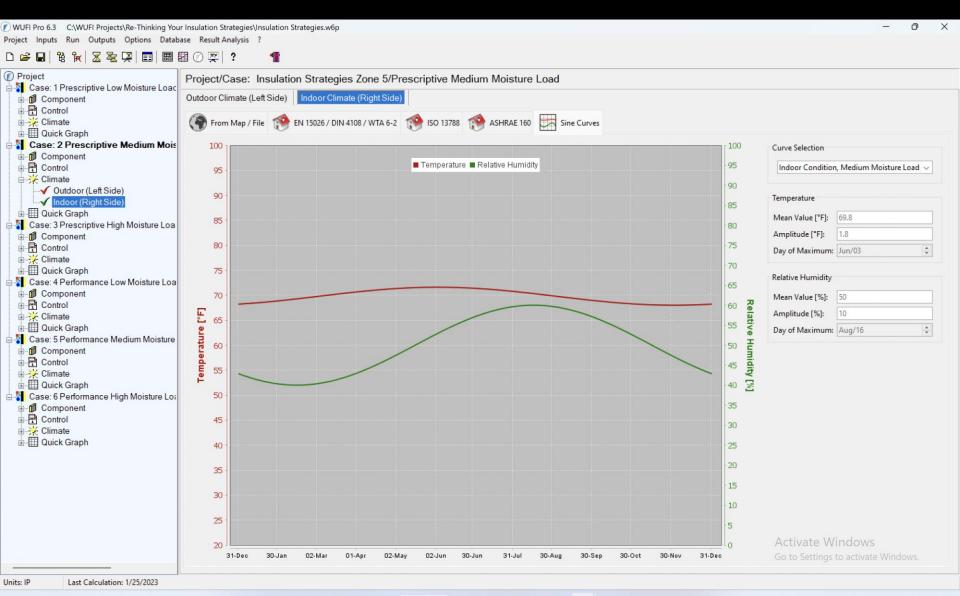
4.) Moisture content of moisture sensitive materials above the content levels at an 80% RH environment.


5.) RH levels above 70% at paper faced gypsum board.

Prescriptive Requirements High Moisture Load

Q Search

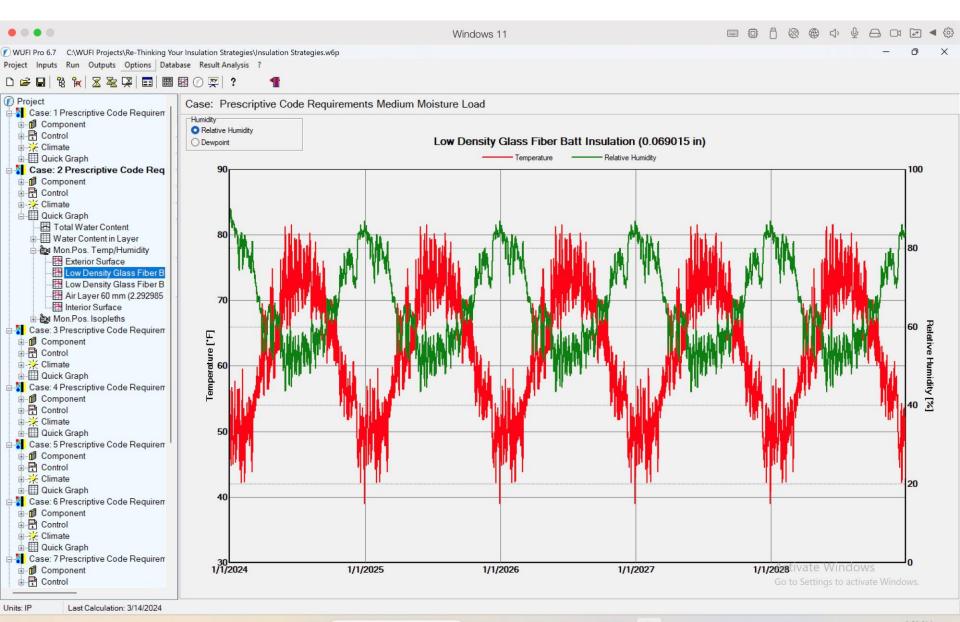
Prescriptive Requirements High Moisture Load



Q Search

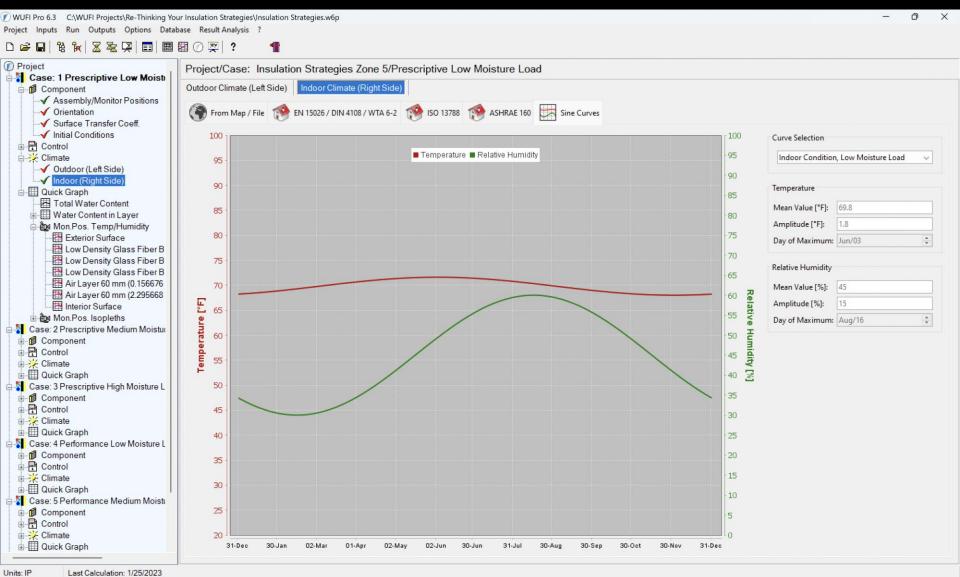
3:46 PM

3/14/2024


Prescriptive Requirements Medium Moisture Load

Q Search

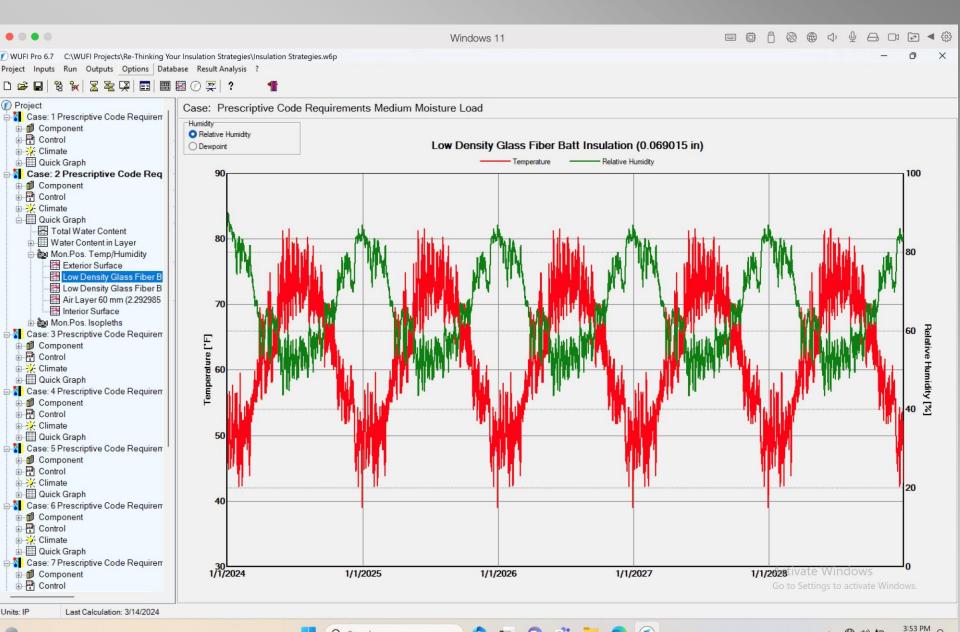
へ (小小) (10:01 AM 2/1/2023


Prescriptive Requirements Medium Moisture Load

Q Search

^ (⊂ () (→ 3:53 PM)

Prescriptive Requirements Low Moisture Load



Q Search

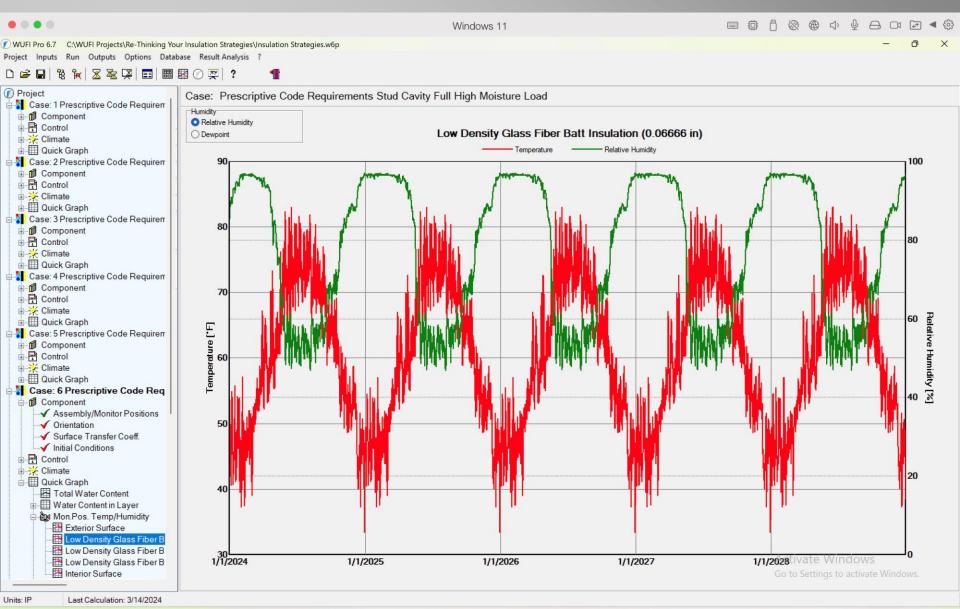
Last Calculation: 1/25/2023

29°F Sunny

Prescriptive Requirements Low Moisture Load

3/14/2024

Q Search

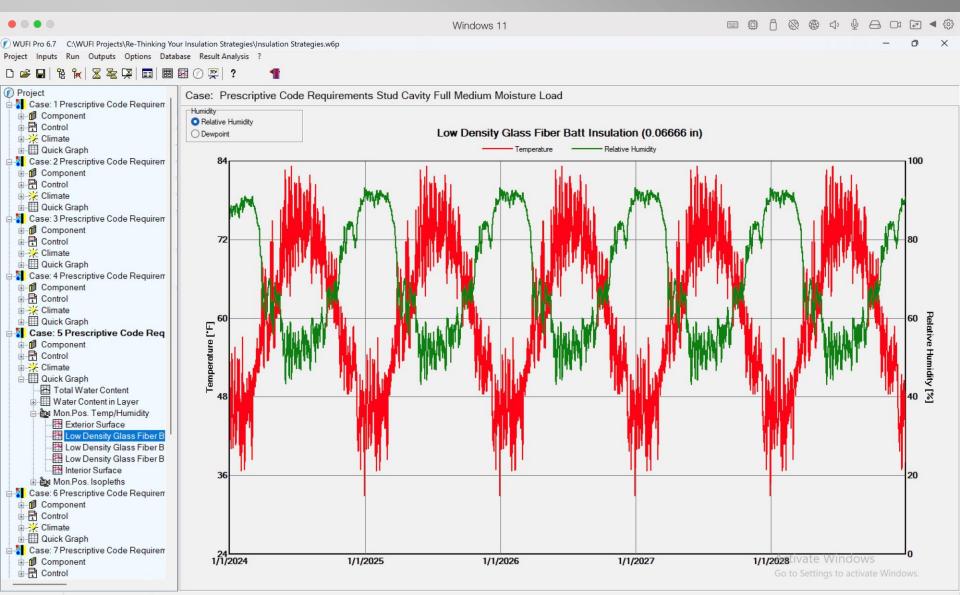

More Is Not Always Better!!!

Fill The LGMF Cavity With Insulation

• • • •		Windows 11			
WUFI Pro 6.7 C:\WUFI Projects\Re-Thinking Yo	our Insulation Strategies\Insulation Strate	egies.w6p		- 0 ×	
Project Inputs Run Outputs Options Data	base Result Analysis ?				
🗅 🛩 🖬 🛯 🗞 🦌 🛣 🐼 🖾 🗐 📰	⊠⊘⊋ ? 1				
Project Case: 1 Prescriptive Code Requirem	Case: Prescriptive Code Requirements Stud Cavity Full Low Moisture Load				
Project Case: 1 Prescriptive Code Requirerr Component Quick Graph Case: 2 Prescriptive Code Requirerr Component Control Control Control Component Quick Graph Case: 3 Prescriptive Code Requirerr Control Control Control Control Control Component Quick Graph Coase: 3 Prescriptive Code Requirerr Quick Graph Component Control Component Component Control Component Component Component Component Component Component Component Component Control Control Control Control Control Control Control Control Case: 5 Prescriptive Code Requirerr Control	Case: Prescriptive Code Assembly/Monitor Positions Layer Name Low Density Glass Fiber Batt In Exterior (Left Side)	Drientation/Inclination/Height Surface Transfer Coeff. Thickn. [in]	Initial Conditions Initial Conditions Initial Conditions Image: Sources Sinks Image: Sources Sinks		
Climate Quick Graph	Thickness: 14.883 in	R-Value: 34.78 h ft² °F/Btu U	-Value: 0.028 Btu/h ft²°F		
Case: 8 Performance Requirements ⊕				Activate Windows Go to Settings to activate Windows.	
Units: IP No calculation results available					
0		Q Search	0 3 🔒 🕑 🕜	∧ ⊕ Φ)	

C

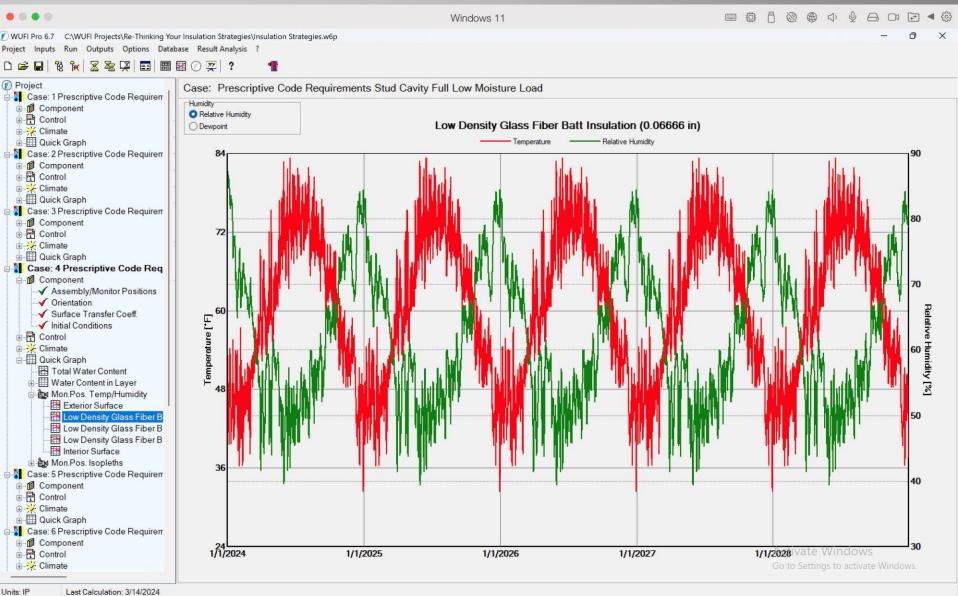
Fill The LGMF Cavity High Moisture Load



Q Search

Russell 2000

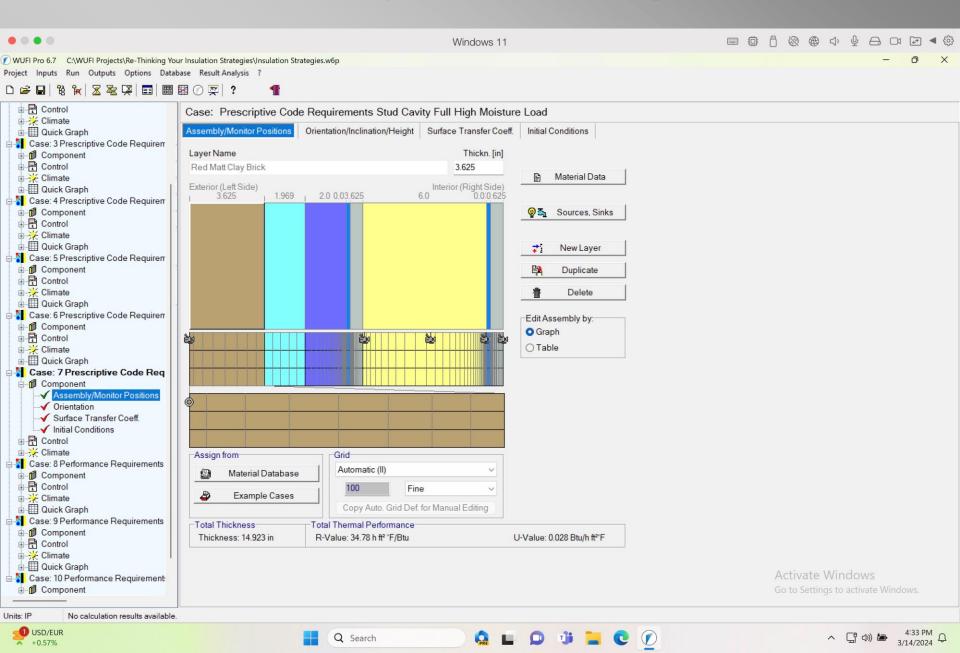
^ ☐ <10) 4:31 PM 3/14/2024 ↓


Fill The LGMF Cavity Medium Moisture Load

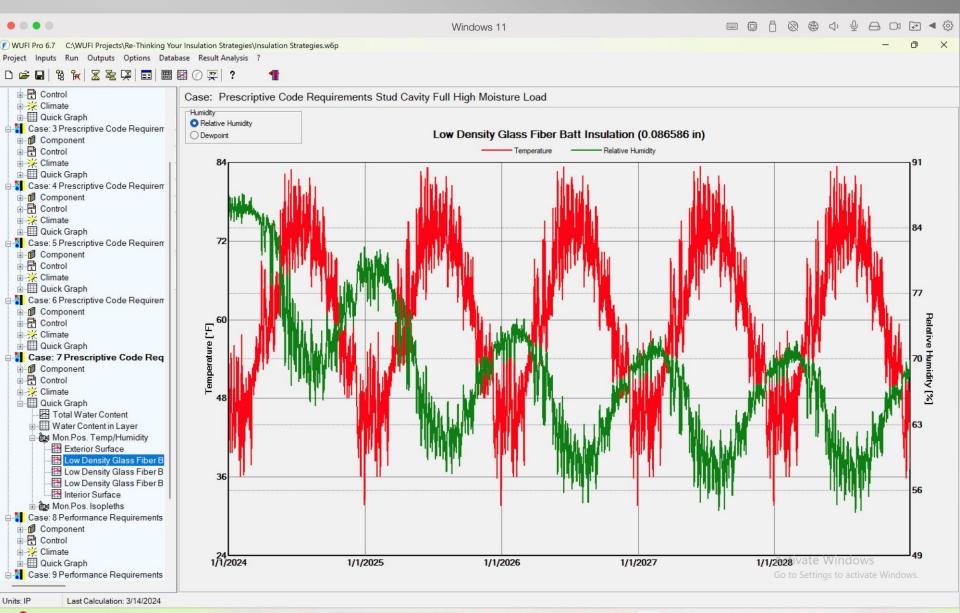
Q Search

Last Calculation: 3/14/2024 Units: IP

Fill The LGMF Cavity Low Moisture Load


Q Search

Last Calculation: 3/14/2024


4:08 PM

3/14/2024

Fill The LGMF Cavity Interior VB High Moisture Load

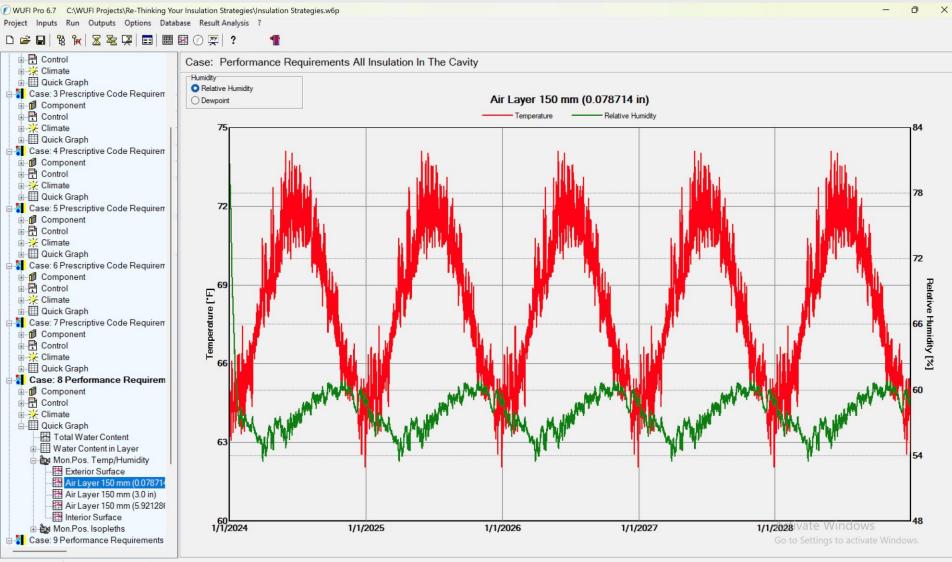
Fill The LGMF Cavity VB High Moisture Load

다 다) (145 PM (1445 P

Q Search

Exterior Air Film	R-0.17
Brick Veneer	R-0.4 4
Air Space	R-1.0
Insulation	?????
Air/Vapor Barrier	0.00
Sheathing	0.56
Metal Studs (air space)	0.79
Wallboard	0.53
Paint	0.00
Interior Air Film	<u>0.68</u>

Total Without Insulation4.17

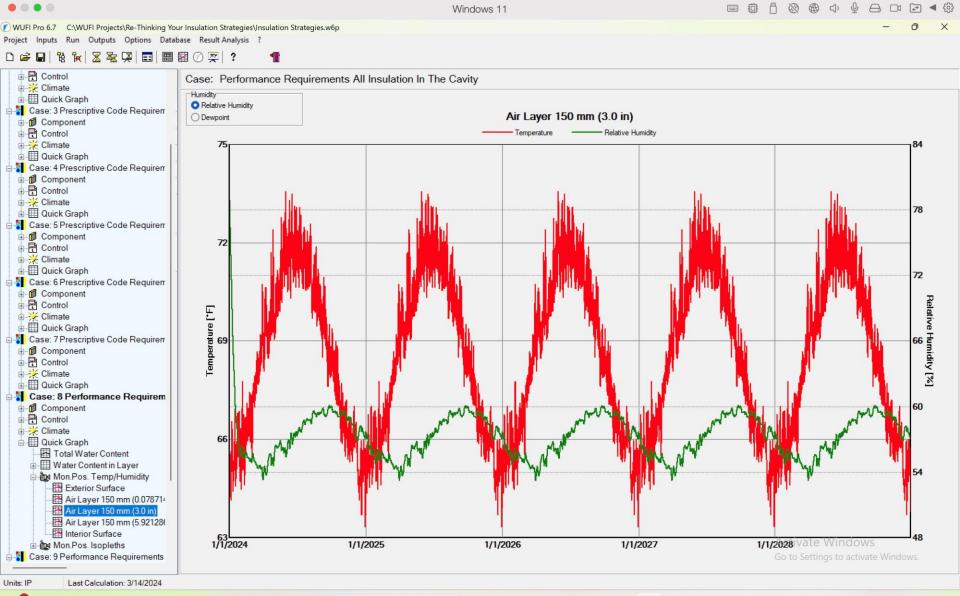

Insulation needs to be R-14.01 or better

Windows 11 📝 WUFI Pro 6.7 C:\WUFI Projects\Re-Thinking Your Insulation Strategies\Insulation Strategies.w6p n Project Inputs Run Outputs Options Database Result Analysis ? 🛛 🏂 🖾 📰 📰 🖾 ⊘ 🖾 🤇 숺 D 🚅 Red -E Control Case: Performance Requirements All Insulation In The Cavity 🗄 🔆 Climate Assembly/Monitor Positions De Quick Graph Orientation/Inclination/Height Surface Transfer Coeff. Initial Conditions 🗄 🎦 Case: 3 Prescriptive Code Requirem Layer Name Thickn. [in] E-D Component E Control 6.0 Air Layer 150 mm Material Data 🗄 🔆 Climate P Exterior (Left Side) Interior (Right Side) Duick Graph 3.625 1.969 3.0 0.03.625 60 🗄 🎦 Case: 4 Prescriptive Code Requirem 🗄 🗊 Component Sources, Sinks E Control 🗄 🔆 Climate 🗄 🖽 Quick Graph New Layer #1 🗄 🎦 Case: 5 Prescriptive Code Requirem E Component Duplicate E Control 🗄 🔆 Climate Delete 🗄 🌐 Quick Graph Case: 6 Prescriptive Code Requirem Edit Assembly by: E- Component O Graph E Control ê Da è Ph Px ○ Table E 🔆 Climate 🗄 🖽 Quick Graph Case: 7 Prescriptive Code Requirem E-1 Component E Control 0 0 0 🗄 🔆 Climate 🗄 🔠 Quick Graph Monitor Positions (Air Layer 150 mm) 🗄 🊺 Case: 8 Performance Requirem Component ✓ Assembly/Monitor Positions Assign from Grid Orientation Automatic (II) Material Database Surface Transfer Coeff. Initial Conditions 100 Fine V 8 Example Cases E Control Copy Auto. Grid Def. for Manual Editing 🗄 🔆 Climate 🗄 🔠 Quick Graph Total Thickness Total Thermal Performance Case: 9 Performance Requirements Thickness: 15.883 in R-Value: 21.35 h ft² °F/Btu U-Value: 0.045 Btu/h ft2°F i Component E Control 🗄 🔆 Climate Duick Graph Case: 10 Performance Requirement: Units: IP Last Calculation: 3/14/2024

Q Search

^ ☐ <10) 4:47 PM → 3/14/2024 ↓

Windows 11


Units: IP Last Calculation: 3/14/2024

1 Light rain

Tomorrow

.

Q Search

Q Search

🚺 Light rain Tomorrow

4:57 PM へ [小) 値

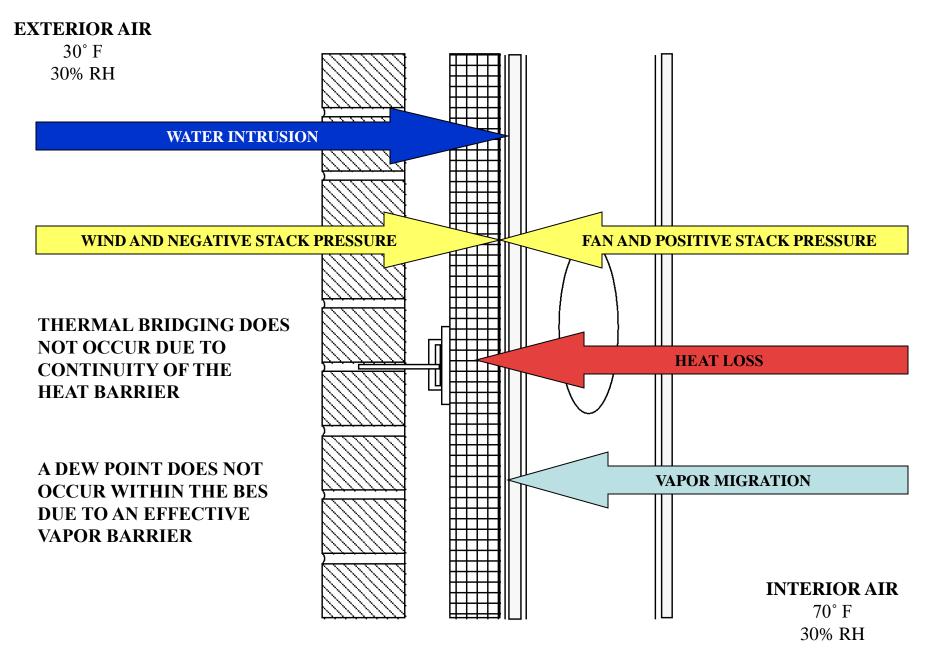
Windows 11

WUFI Pro 6.7 C:\WUFI Projects\Re-Thinking Your Insulation Strategies\Insulation Strategies.w6p Project Inputs Run Outputs Options Database Result Analysis ? 🔀 😼 🖾 📰 📰 🔠 🔘 🖳 ? 뭖 D 🖻 Red -E Control Case: Performance Requirements All Insulation In The Cavity 🗄 🔆 Climate Humidity + Quick Graph O Relative Humidity Case: 3 Prescriptive Code Requirem Air Layer 150 mm (5.921286 in) O Dewpoint E D Component E Control Temperature Relative Humidity E 🔆 Climate 74 Duick Graph Case: 4 Prescriptive Code Requirem E Component E Control E 💥 Climate 78 Duick Graph Case: 5 Prescriptive Code Requirem 72 🗄 🎁 Component E Control 🗄 🔆 Climate 🗄 🔠 Quick Graph 72 🗄 🚺 Case: 6 Prescriptive Code Requirem E D Component Relative Humidity [% 70 Control Temperature [*F] 🗄 🔆 Climate Duick Graph Case: 7 Prescriptive Code Requirem 66 E-1 Component E Control 🗄 🔆 Climate 68 Duick Graph 🗄 🎦 Case: 8 Performance Requirem 60 E-1 Component E Control Quick Graph Total Water Content 66 Water Content in Laver 🖻 🏚 Mon.Pos. Temp/Humidity Exterior Surface Air Layer 150 mm (0.078714 Air Layer 150 mm (3.0 in) Air Laver 150 mm (5.92128 Interior Surface 1/1/2024 1/1/2025 1/1/2026 1/1/2027 1/1/2028 Vate Windows 🗄 🏚 Mon.Pos. Isopleths Case: 9 Performance Requirements

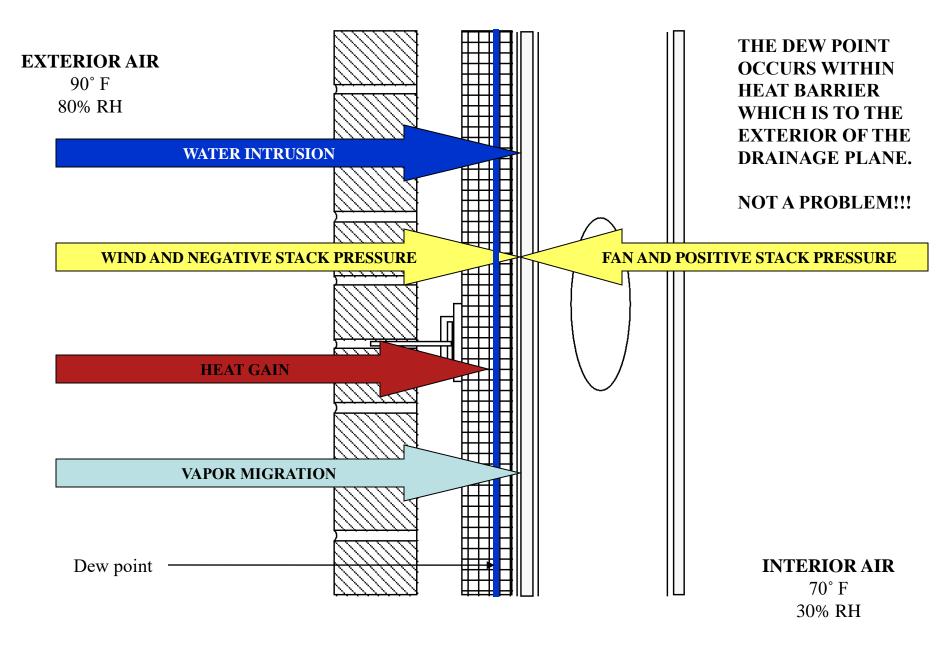
Q Search

Units: IP Last Calculation: 3/14/2024

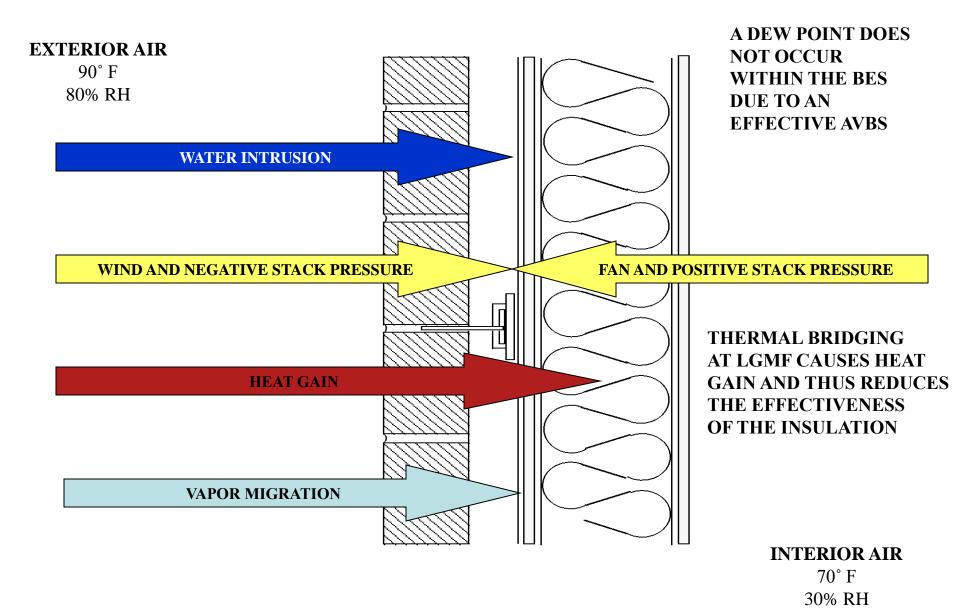
1 55°F

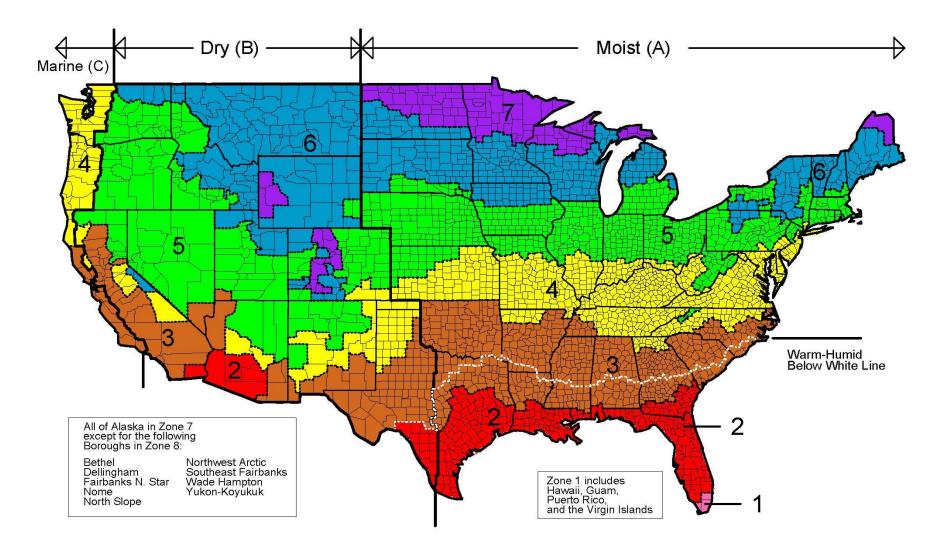

Sunny

^ ☐ <10) 4:58 PM → 3/14/2024 →


n

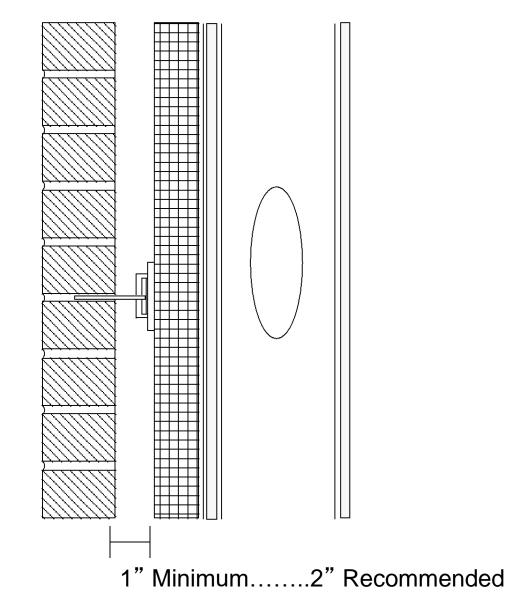
①


Cold Climate Air And Vapor Barrier System: Winter


Cold Climate Air And Vapor Barrier System: Summer

Warm Climate Air And Vapor Barrier System

Map of DOE's Proposed Climate Zones


March 24, 2003

What We Can Do?

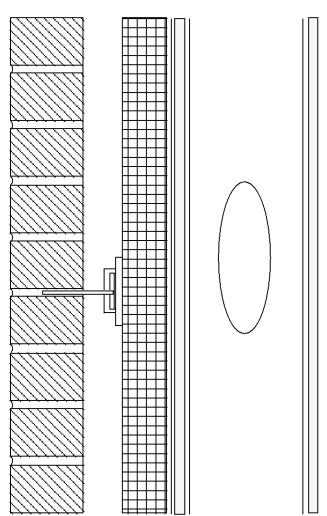
BIA Tech Notes

SPF In Cavity

5" of 2 lb Density Closed-Cell SPF (R-7.1 / inch thickness)

= R-35.5 insulation layer

Leaves 1" cavity


Assembly: R-39.67

Code Requirements:

2021 IEC: R-18.18

90.1 2019: R-18.18

MA Stretch Code: R-24

Good applicators can control the thickness

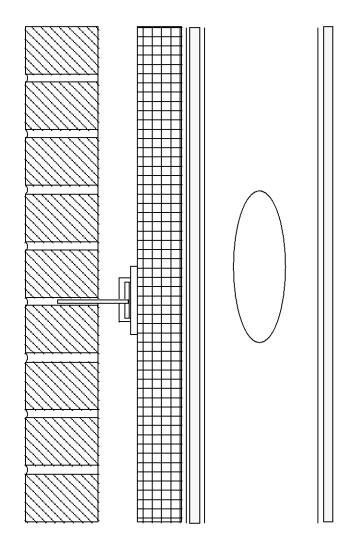
Polyisocyanurate In Cavity

5" polyiso in cavity (R-6.5 / inch thickness)

= R-32.5 insulation layer

Leaves 1" cavity

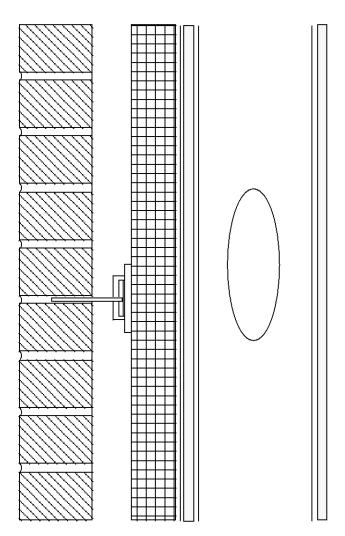
Multiple layer installation (2" + 3")

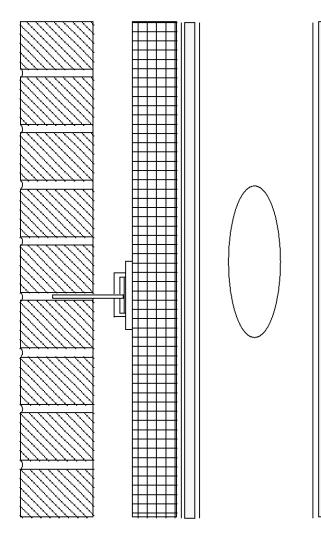

Assembly: R-36.67

Code Requirements:

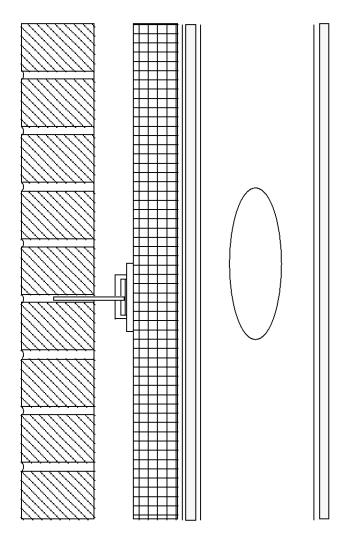
2021 IEC: R-18.18

90.1 2019: R-18.18


MA Stretch Code: R-24


5" XPS in cavity (R-5 / inch thickness)

- = R-25 insulation layer
- Leaves 1" cavity
- Multiple layer installation (2" + 3")
- Assembly: R-29.17
- **Code Requirements:**
- 2021 IEC: R-18.18
- 90.1 2019: R-18.18
- MA Stretch Code: R-24


Rock or Mineral Wool In Cavity

- 5" mineral wool in cavity (R-4.2 / inch thickness)
- = R-21 insulation layer
- Leaves 1" cavity
- **Multiple layer installation**
- Assembly: R-25.17
- **Code Requirements:**
- 2021 IEC: R-18.18
- 90.1 2019: R-18.18
- MA Stretch Code: R-24

- 5" EPS in cavity (R-4 / inch thickness)
- = R-20 insulation layer
- Leaves 1" cavity
- Multiple layer installation (2" + 3")
- Assembly: R-24.17
- **Code Requirements:**
- 2021 IEC: R-18.18
- 90.1 2019: R-18.18
- MA Stretch Code: R-24

Precast Concrete Panel Veneer

https://exo-tec.biz/insulating-precast-walls/

Existing Multi-Wythe Masonry Walls

https://buildingscience.com/documents/bareports/ba-1105internal-insulation-masonry-walls-final-measureguideline/view

Consulting, Inc. www.exo-tec.biz

a la a 2024 building enclosure conference